

GLOBAL EARTHQUAKE MODEL

Update of the Global Hazard Model

The GEM Global Hazard Mosaic Update 2023

GEM Seismic Hazard and IT Teams

Kirsty Bayliss, Christopher Brooks, Kendra Johnson, Marco Pagani, Anna Rood, Michele Simionato, Richard Styron, Manuela Villani, Shreyasvi Chandrasekhar, Thomas Chartier, Yen-Shin Chen, Robin Gee, Julio Garcia-Pelaez

GEM Release of Hazard and Risk Products October 13th, 2023

The GEM Global Mosaic

- The GEM Global Mosaic is a collection of seismic hazard models that overall provide hazard values for most inland areas globally
- The first version was released at the end of 2018 and since then it has been updated and improved regularly by GEM
- The mosaic is a basic dataset for computing a variety of products such as the global hazard and risk maps

Improvements/changes in the current release

Improvements/changes in the current release

Models

Hazard Calculation

Results

- Improvements to earthquake occurrence and ground-motion modelling
- New models

 Horizontal component of motion

- Truncation of GM aleatory distribution
- Minimum magnitude homogenization

- Grid with higher resolution
- More Intensity Measure Types
- Disaggregation results for main cities

Hazard Maps Resolution

We abandoned the uniform grid of points created using in-house code in favor of the H3 library (<u>https://h3geo.org/</u>) and we increased the density of points

Hazard Maps Resolution (contd)

We abandoned the uniform grid of points created using in-house code in favor of the H3 library (<u>https://h3geo.org/</u>) and we increased the density of points

a) Pre-2023 resolution b) Hazard computed for about 4.5 M of sites globally. Spacing about 6 km b) $\int_{deN} \int_{de} \int_{d$

GLOBAL QUAKE MODEL .ORG

12°F

GEN

Global Seismic Hazard Maps

The GEM Global Mosaic: hazard results

- Results computed on reference rock conditions (i.e., 800 m/s) and on soil using the USGS Vs30 database
- Seismic Hazard Curves for PGA and Spectral Acceleration at 0.1, 0.2, 0.3, 0.6, 1.0 and 2.0 seconds
- Uniform Hazard Spectra and hazard maps for two return periods
- Seismic Hazard Disaggregation for main cities (5 IMTs and 2 PoEs)

The hazard

Map Suite A collection of maps for different return periods, intensity measure types and soil conditions

Components 2 Seismic Hazard Maps, 3 intensity measure types (Peak Ground Acceleration for 0. and 1s) two return periods (475 and 2475 years) two ground-motion reference conditions (bedrock and spatially variable

soil)

A Truly Global Model ...

Time-dependence

 In various sectors there is an increasing interest to incorporate time dependence into hazard. We have ongoing activities for building new time-dependent models.

Global Earthquake Scenarios (GEeSe) Project

Magnitude

6

8

10

Goal: to define a set of groundmotion fields reproducing the observed pattern of shaking for most of the events in the ISC-GEM catalogue of engineering significance (relying to the extent possible on existing information e.g., USGS Shakemaps)

States States

Requirements: Finite fault rupture (from literature, or from a PSHA input model), ground-motion models (from PSHA input models) and strongground motion data.

First version completed within this year / early 2024 and it will be linked to the DB of impact prepared by the GEM risk team

ASCE Earthquake Loads Overseas (AELO) project

- Project carried out within a collaboration between the USGS and GEM and supported by U.S. DoS and DoD
- GOALs are:
 - To compute ASCE 7-16 and 41-17 design loads + subsequently ASCE 7-22 and 41-23 for a set of about 500 sites outside of US and distributed globally
 - To develop an web-based system that, given the coordinates of a site, can provide the information required to apply the building codes just described globally.

GLOBAL QUAKE MODEL .ORG

Toward a Global Stochastic Event Set

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) <u>https://creativecommons.org/licenses/by-nc-nd/4.0/</u>