

EARTHQUAKE HAZARD & RISK ASSESSMENT OF BANGLADESH

PRESENTATION OF RESULTS AT UPAZILA LEVEL

GLOBAL EARTHQUAKE MODEL FOUNDATION

3rd March 2024

GLOBAL QUAKE MODEL

Project Team

Dr. Marco Pagani Head of Seismic Hazards Italy

Dr. Richard Styron Active Faults Specialist United States

Dr. Christopher Brooks Seismic Hazard Scientist United Kingdom

Dr. Kendra Johnson Seismic Hazard Scientist United States

Dr. Michele Simionato Sr. Software Developer Italy

2

Jephraim Oro Communications Philippines

Dr. Vitor Silva Head of Risk Engineering Portugal

Catalina Yepes-Estrada Seismic Risk Modeller Colombia

Dr. Catarina Costa Infrastructure Risk Portugal

Dr. Luís Martins Physical Vulnerability Portugal

Lana Todorovic Liquefaction Analyst Montenegro

Dr. Anirudh Rao Seismic Risk Modeller India

About GEM Foundation

Non-profit scientific NGO, founded in 2009

Global, public-private partnership

We develop open software, tools and data for use in earthquake hazard and risk assessment worldwide, and work together with local governments and institutions to promote their use in DRR applications.

Our Vision

GLOBAL QUAKE MODEL .ORG

For a world that is resilient to earthquakes and other natural hazards

www.globalquakemodel.org

Our Supporters

Public Governors

Advisor Sponsors

PartnerRe

SERVICIO GEOLÓGICO COLOMBIANO

CelsiusPro DESCARTES GP GLOBAL PARAMETRICS

Project Partners

sura

0

safehub

edf

GEM

GLOBAL

OUAKE

MODEL

Australian Covernmen

Geoscience Australia

SINGAPORE

AXA

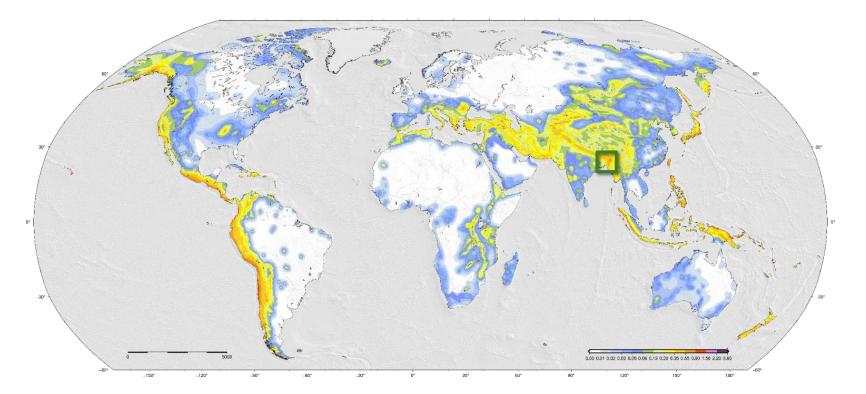
Private Governors

4

dClimate

Associate Partners


Product Distribution Partners



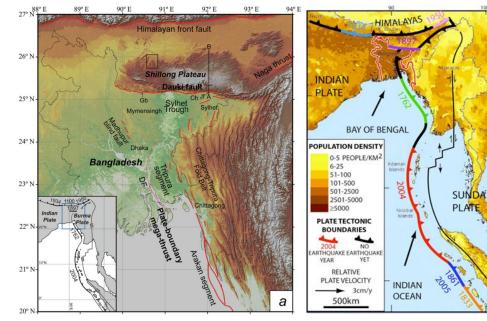
Collaboration Framework

- Built upon collaborations and partnerships
- Multi-level approach, linking local through to global scale
- Guided by GEM Principles:
 - Collaboration
 - Credibility
 - Openness
 - Public-good

GEM's Global Seismic Hazard and Risk Maps

GLOBAL QUAKE MODEL

GEM


GLOBAL EARTHQUAKE MODEL

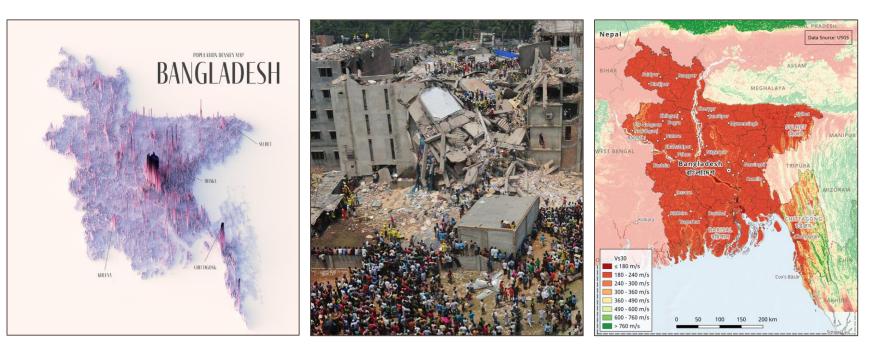
GLOBAL

OUAKE

MODEL

Context

Active fault map of Bangladesh


Morino et al. (2014). A paleo-seismological study of the Dauki fault at Jaflong, Sylhet, Bangladesh: Historical seismic events and an attempted rupture segmentation model. Journal of Asian Earth Sciences, 91, 218–226.

Subduction plate boundaries

Source: Michael Steckler / Lamont-Doherty Earth Observatory

- No significant earthquake in the last century
 - DRR resources almost exclusively devoted to cyclone and flood management
 - Potential for earthquakes on the Madhupur and Dauki faults
 - Potential for large subduction earthquakes

Context

High population across the country, with a particular concentration in Dhaka

Bangladesh population: 165 million (2022 census) Dhaka metropolitan area: 22.5 million (2022 census)

Rapid urbanization coupled with poor quality RC construction & slums

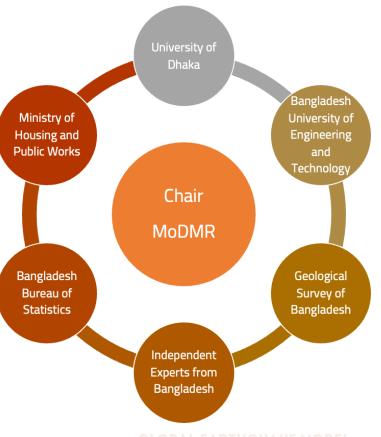
Collapse of Rana Plaza in Savar, Dhaka led to 1,134 fatalities and around 2,500 injuries

80% of the country is a river delta – deep deposits of soft clay & silt

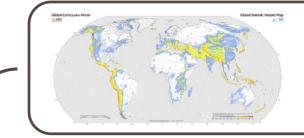
Potential for significant amplification of ground motions and liquefaction **OUARE MODEL**

Previous Efforts, and Need for a Nationwide Earthquake Risk Assessment

GEM


GLOBAL

OUAKE

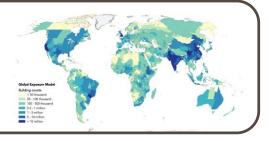

MODEL

Project Activities

- Needs and Gaps Assessment
- Technical Panel Consultations
- Seismic Hazard Mapping
- Exposure Mapping
- Seismic Vulnerability Assessment
- Seismic Risk Mapping & Interpretation
- Stakeholder Consultation & Validation
- Dissemination and Training Workshop
- Publication of Final Results & Materials

Three Components of Seismic Risk

Hazard

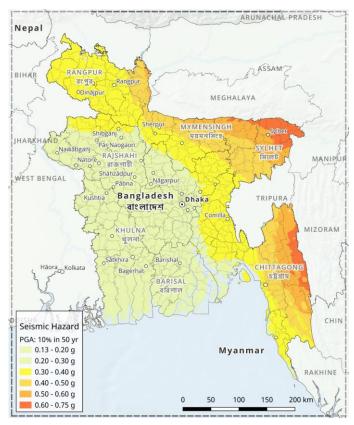

Characterizing the potential locations, intensity or magnitude, frequency or probability of earthquakes

Seismic Risk

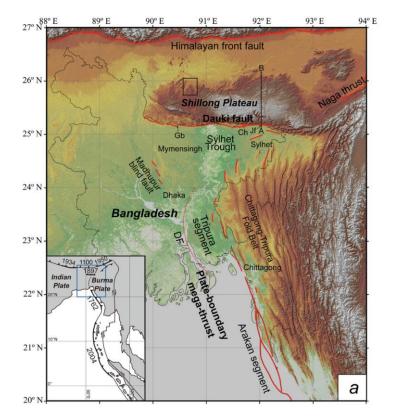
Risk occurs when there is a – spatial and temporal overlap of these three elements

Exposure

Characterizing the built environment and people in hazard-prone areas



Vulnerability


Factors which increase the susceptibility of an individual or assets to the impacts of hazards

SEISMIC HAZARD

ACTIVE FAULTS HISTORICAL EARTHQUAKES SEISMIC HAZARD MAPPING SCENARIO MODELLING

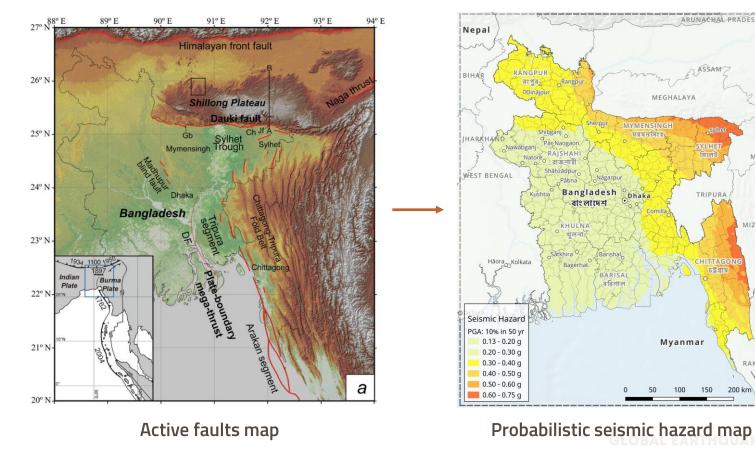
Seismic hazard assessment – Probabilistic

GEN

GLOBAL

- Identification of active faults
- Tectonic region type assignments
- Historical earthquake catalogue
- Ground motion characterization
- Soil characterization
- Probabilistic seismic hazard maps

13


GEM

GLOBAL

OUAKE

MODEL

Seismic hazard assessment – Probabilistic

14

ARUNACHAL PRADESH

ASSAN

SYLHET

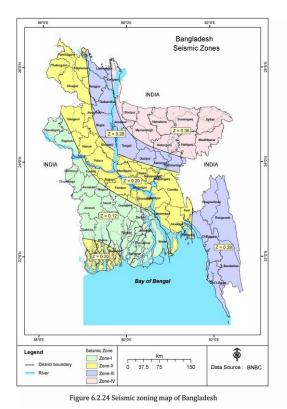
TRIPURA

MANIPU

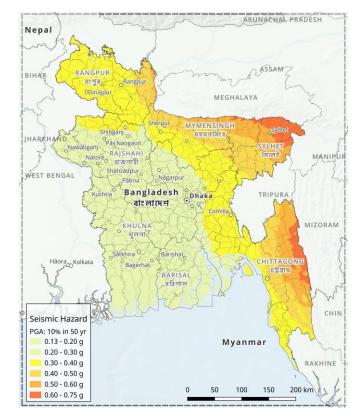
MIZORAM

CHIN

RAKHINE

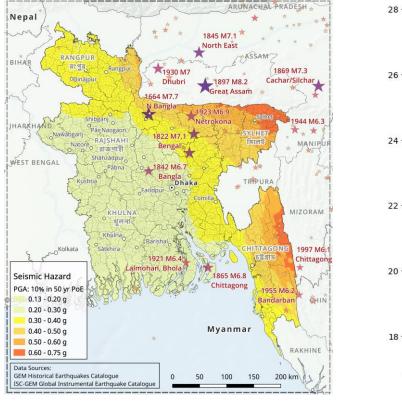

200 kr

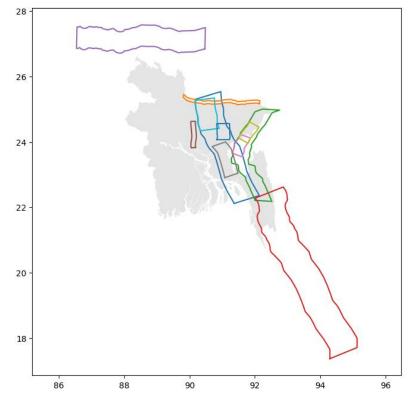
MEGHALAYA


Myanmar

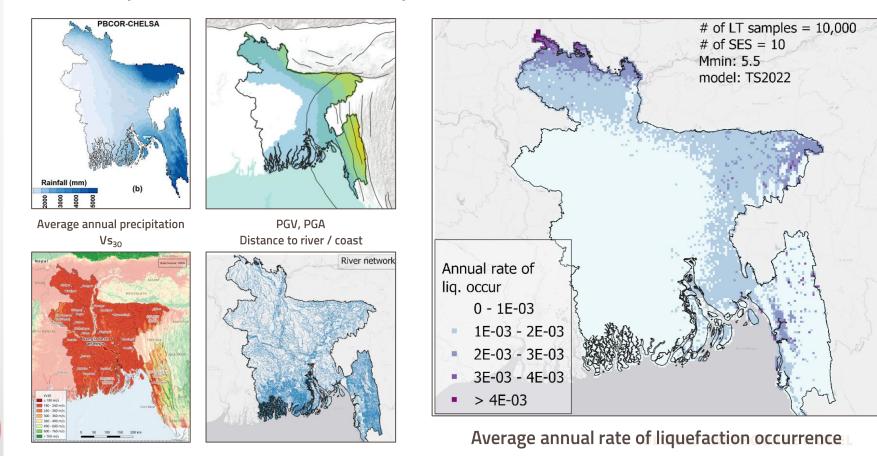
150

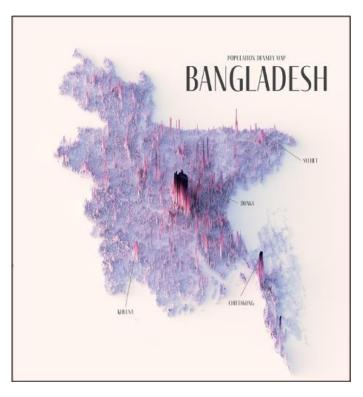
Seismic hazard assessment – Probabilistic


BNBC seismic zone map


Probabilistic seismic hazard map

Seismic hazard assessment – Scenarios


Historical earthquakes


Modelled scenario ruptures

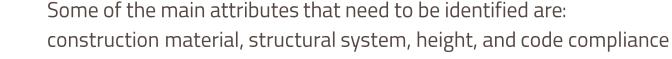
Earthquake-induced soil liquefaction

17

EXPOSURE

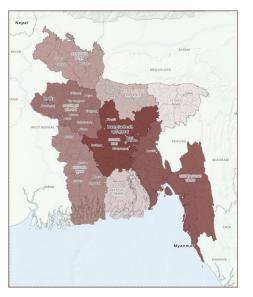
B U I L D I N G S P O P U L A T I O N I N F R A S T R U C T U R E

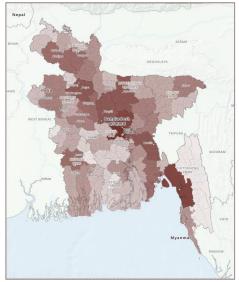
GEM

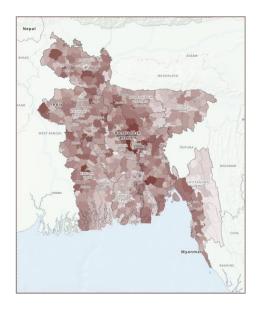

https://zagreb.gdi.net/zg3d/

Exposure – Structural and physical attributes

It is necessary to identify the physical characteristics of the built environment, to classify each exposed element according to its seismic fragility and vulnerability







GLOBAL EARTHQUAKE MODEL

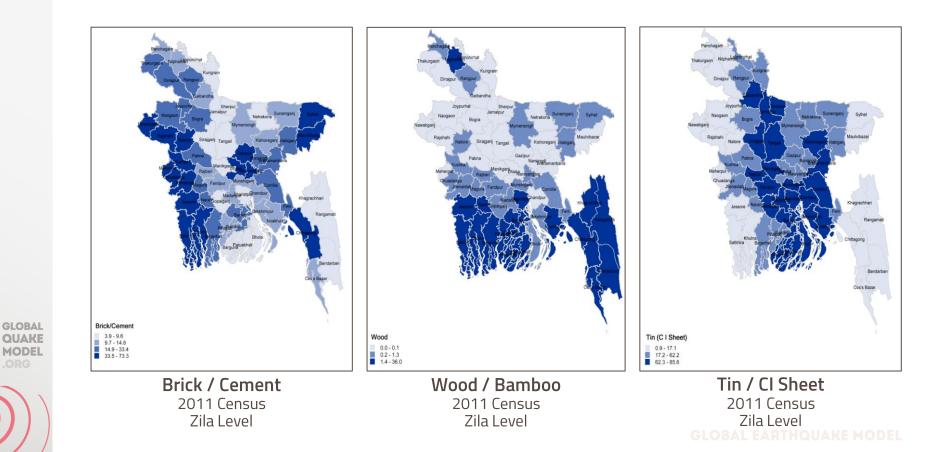
Exposure – Residential buildings

GLOBAL QUAKE MODEL

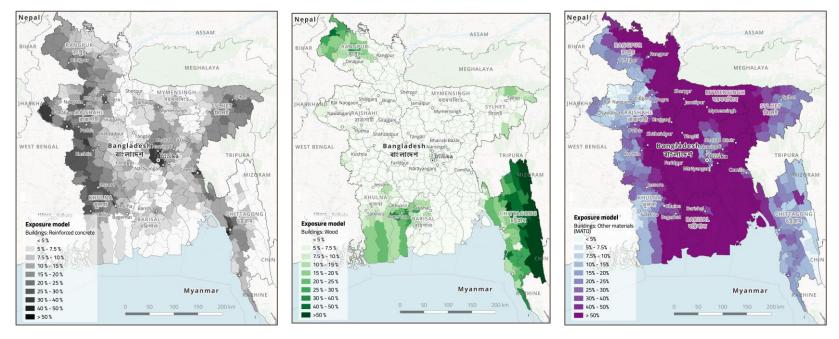
Residential Exposure (2018)

2011 Čensus Admin Level 1 – Division (8)

Residential Exposure (2022)


2011 Čensus Admin Level 2 – Zila (64)

Residential Exposure (2024) 2022 Census Admin Level 3 – Upazila / Thana


GLOBAL EARTHQUAKE MODEL

Exposure – Geographical variation of construction types

GEM

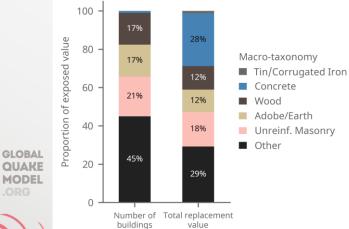
Exposure – Geographical variation of construction types

MODEL .ORG

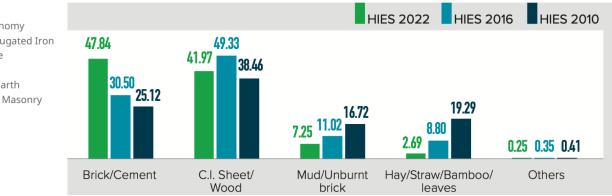
GLOBAL

OUAKE

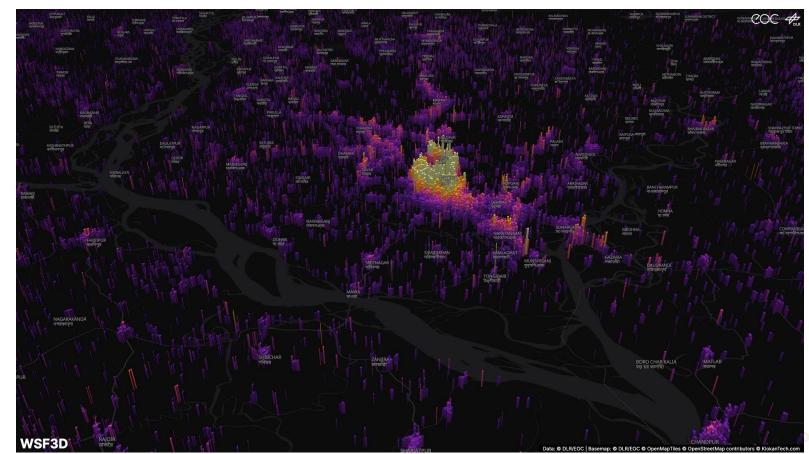
Brick / Cement 2022 Census Upazila Level


Wood / Bamboo

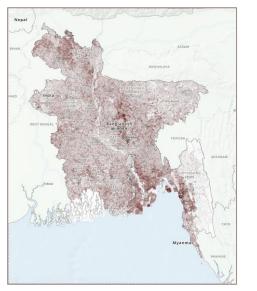
2022 Census Upazila Level


Other Materials 2022 Census Upazila Level GLOBAL EARTHOUAKE MODEL

Exposure – Evolution of construction types



Percentage Distribution of Main Dwelling Structure by Materials of Wall and by Year


26

Exposure – Inferring building heights

GLOBAL QUAKE MODEL ORG 27

Exposure – Enhanced spatial resolution for flood risk

Buildings

- Residential
- Commercial
- Industrial

Attributes

- Location
- Typology
- Valuation
- Height
- Age
- Population
 - 2022 Census

GLOBAL QUAKE MODEL

GEM

Residential Exposure (2024)

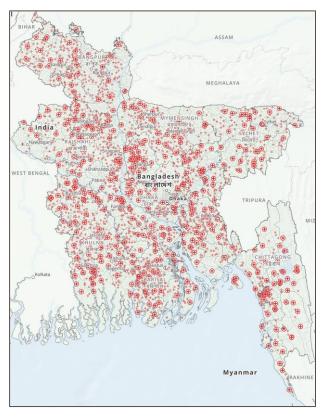
2022 Čensus Admin Level 5 – Villages Residential Exposure (2024)

2022 Čensus Admin Level 6 – Enumeration Areas

GLOBAL EARTHQUAKE MODEL

Exposure – Slum dwellings and floating population

Type of dwelling unit	Slum Census 2014		Slum Census 1997	
	Household	Percentage	Household	Percentage
Jhupri	36875	6.20	142476	42.61
Katcha/Tin	371485	62.45	178586	53.40
Semi-pucca	157243	26.43	10319	3.08
Рисса	24169	4.06	3050	0.91
Others	5089	0.86	NA	NA
National	594861	100.00	334431	100.00


GLOBAL QUAKE MODEL ORG

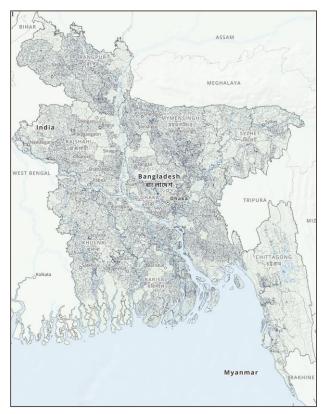
NB: Tong, Chhai etc. included in katcha structure.

Source: Census of Slum Areas and Floating Population 2014, BBS

Exposure – Healthcare facilities

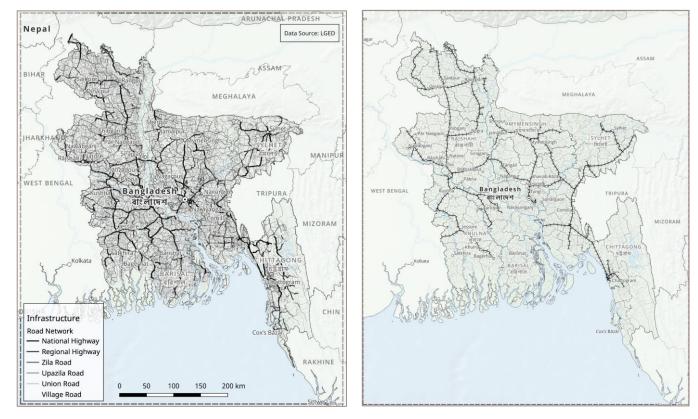
Primary data source:

 Hospitals & Clinics Management Section, Directorate General of Health Services (DGHS)



Exposure – Educational facilities

Primary data sources:


- Bangladesh Bureau of Educational Information and Statistics (BANBEIS), Ministry of Education
- Bangladesh Primary Education Statistics & Annual Primary School Census 2021, Ministry of Primary and Mass Education

Key Statistics (public)

18,907 (627)	Secondary Education
137	English Medium School
1,446 (64)	School & College
3,301 (637)	College Education
9,268 (3)	Madrasah Education
2,547 (322)	Technical-Vocational (Independent)
826 (129)	Professional Education
209 (94)	Teacher Education
164 (53)	University Education
5,272 (369)	Attached Vocational
118,891 (65,566)	Primary Schools

Exposure – Linear infrastructure networks

Primary data sources:

- Local Government Engineering Dept (LGED)
- OpenStreetMap (OSM)

GLOBAL QUAKE MODEL

Road network

Railway network

GLOBAL EARTHQUAKE MODEL

Seismic Vulnerability Model

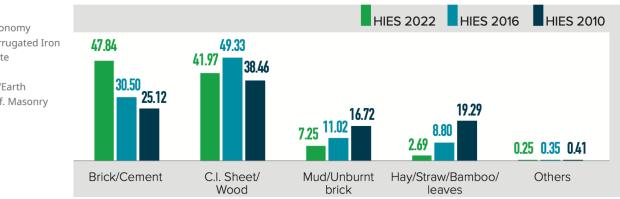
DAMAGE ECONOMIC LOSS FATALITIES, INJURIES & DISPLACEMENT

Seismic fragility and vulnerability

Seismic *fragility* represents the likelihood of an element exposed to seismic hazard to suffer *damage* due to ground shaking. Similarly, seismic *vulnerability* represents the likelihood of an element exposed to seismic hazard to suffer *losses* due to ground shaking

GLOBAL QUAKE MODEL

Seismic vulnerability analysis

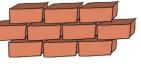


Seismic Intensity

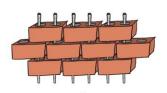
100 17% 28% Proportion of exposed value 80 Macro-taxonomy 17% ■ Tin/Corrugated Iron 60 Concrete 21% 12% Wood Adobe/Earth 40 18% Unreinf. Masonry Other GLOBAL 45% 20 QUAKE 29% MODEL 0 Number of Total replacement buildings value

Percentage Distribution of Main Dwelling Structure by Materials of Wall and by Year

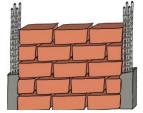
GEM


35

GLOBAL EARTHQUAKE MODEL


Factors affecting damage level – construction factors

Reinforced concrete


Wood

Unreinforced masonry

Reinforced masonry

Confined masonry

GLOBAL QUAKE MODEL

Main material of construction

GLOBAL EARTHQUAKE MODEL

Factors affecting damage level – construction factors

Moment frames

Walls

Infilled moment frames

Dual systems (Moment frames and walls)

Lateral load resisting system (LLRS)

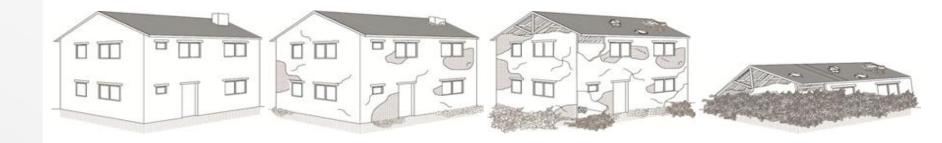
GEM

Factors affecting damage level – construction factors

Number of stories

Height

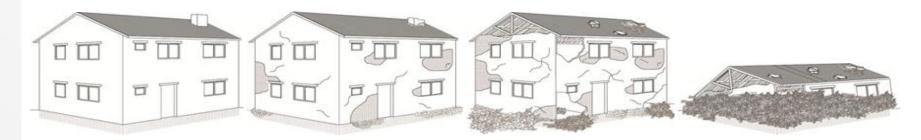
Building code complaince

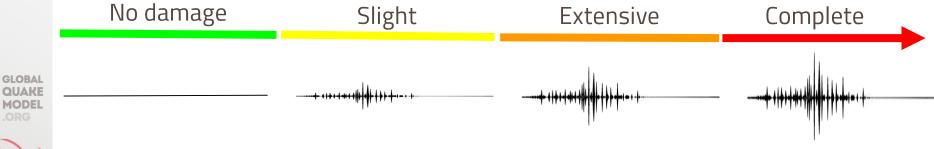

Ductility level

GLOBAL EARTHQUAKE MODEL

Structural response to ground shaking

<u>}</u>





Structural response to ground shaking

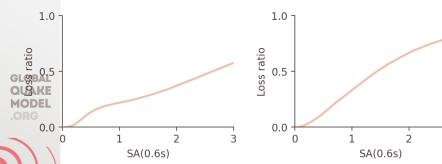
DAMAGE STATE

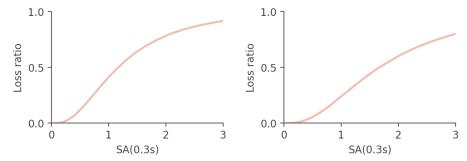
GEM's vulnerability database → Economic losses

3

Bamboo houses

Reinforced concrete buildings



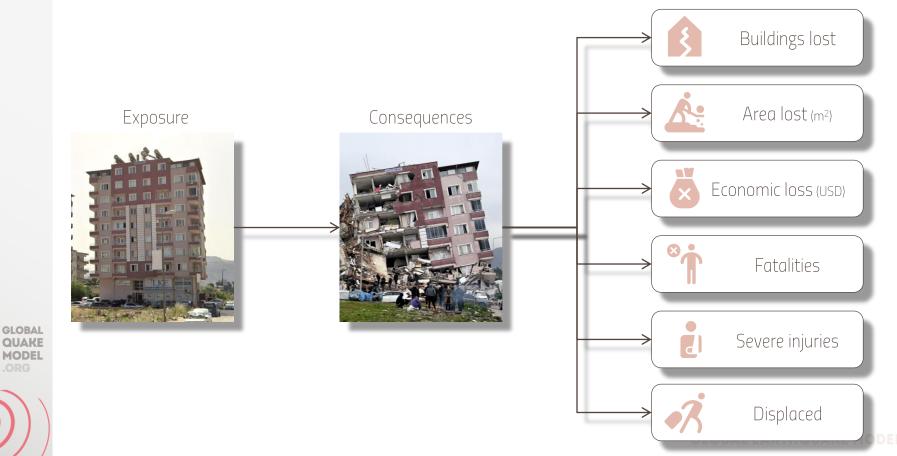

Rubble stone masonry

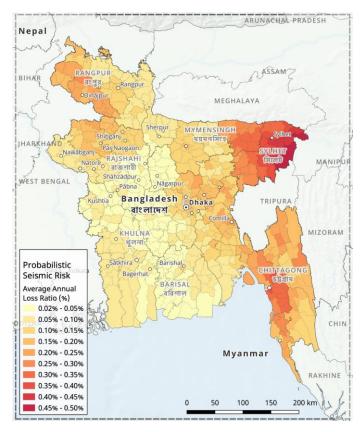
Clay brick masonry

GLOBAL EARTHQUAKE MODEL

41

GEM's vulnerability database --- Human impact




High fatality rates (Concrete)

Moderate fatality rates (Masonry)

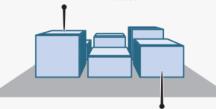
Low fatality rates (Wood)

Risk metrics covered by GEM's vulnerability database

SEISMIC RISK

SCENARIO RISK MODELLING PROBABILISTIC SEISMIC RISK UPAZILA LEVEL RISK MAPS

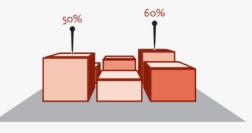
Seismic risk


Hazard

The likelihood, probability, or chance of a potentially destructive phenomenon.

Exposure

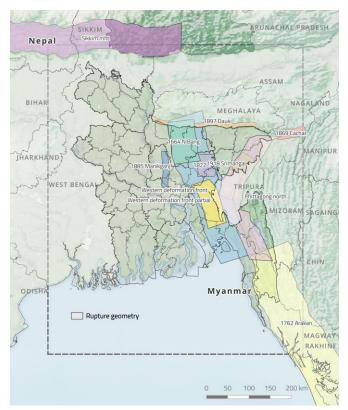
The location, attributes, and values of assets that are important to communities.

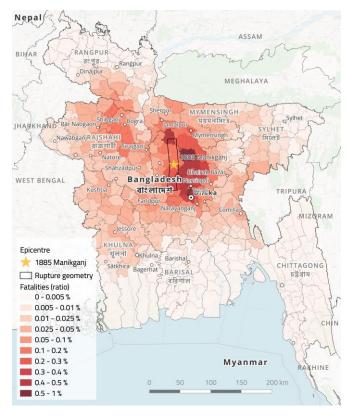

27.7000° N, 85.3333° E

material: cinder block roof: steel

VULNERABILITY

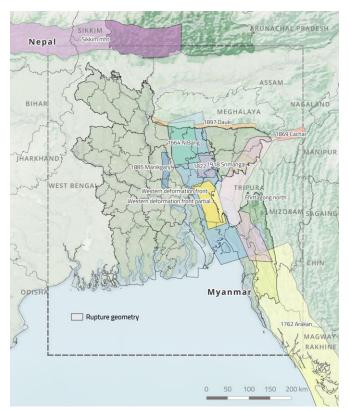
The likelihood that assets will be damaged or destroyed when exposed to a hazard event.

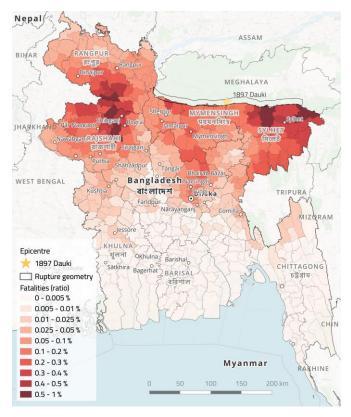

HAZARD


EXPOSURE

Source: gfdrr.org/sites/gfdrr/files/publication/opendri_fg_web_20140629b_0.pdf

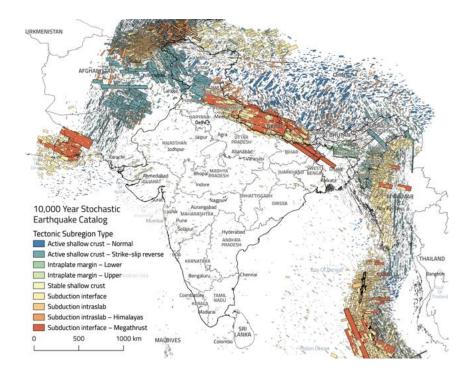
Scenario risk – 1885 M7.2 Manikganj earthquake





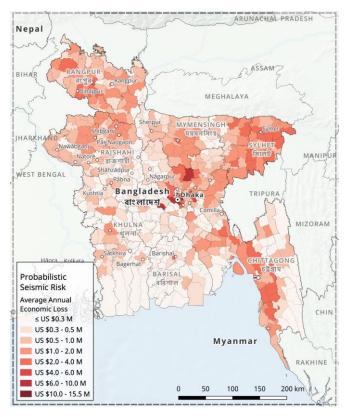
GLOBAL EARTHQUAKE MODEL

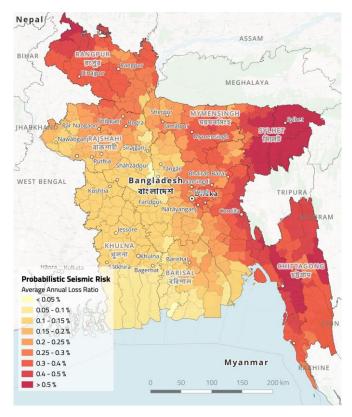
Scenario risk – 1897 M8.7 Dauki earthquake



LOBAL EARTHQUAKE MODEL

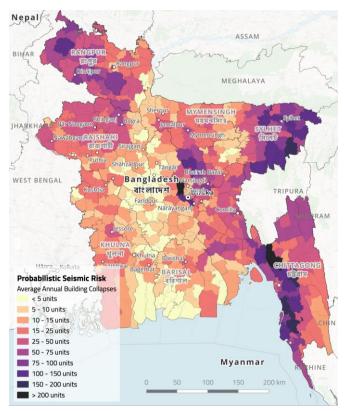
47

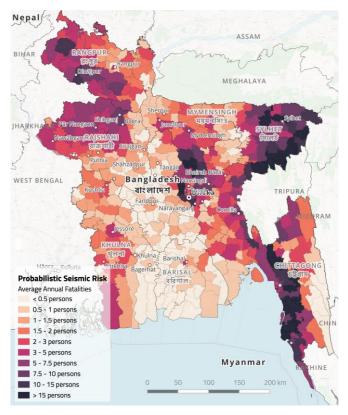

Probabilistic seismic risk assessment



Stochastic earthquake catalog for the Indian subcontinent (10,000 years)

Average annual economic losses at upazila level





GLOBAL QUAKE MODEL ORG

Average annual building collapses and fatalities

GLOBAL QUAKE MODEL .ORG

Project website with risk profiles and materials

🗧 🔍 🗧 🖉 🖉 BAN	NGLADESH Global Earthq ×	PowerPoint Presentat	tion +				~
$\langle \rangle \times \Box$	😋 https://www.globalq	uakemodel.org/proj/bangl	ladesh		û 💖 🛆	🗢 🔤 🗣 🖾	
G Spider 🛅 Journa	als 🚺 Viz 🚺 Tenders	Watchdog Panic					All Bookmarks
GEM O				About Us Products	OpenQuake Resou	rces Get Involved	Q

Background

This project follows a specific support request made by the Ministry of Disaster Management and Relief (MoMDR) to the UN Office for Disaster Risk Reduction (UNDRR) for a sub-national earthquake hazard and risk assessment in Bangladesh. The GEM Foundation has the role of technical expert lead of the project which will include the following activities:

- Needs and Gaps Assessment
- Technical Panel Formation and Initial Consultations
- Seismic Hazard Mapping
- Exposure Mapping
- · Seismic Vulnerability Assessment
- · Seismic Risk Mapping and Interpretation
- Stakeholder Consultation and Validation
- Preliminary Model Dissemination and Training Workshop

Funding and technical partner: UNDRR Duration: 2023 - 2024

51

Social Vulnerability Model

MOTIVATION SOVI METHODOLOGY SOCIO-ECONOMIC VARIABLES

Disparate impacts on different groups

More than 90% of people killed by western Afghanistan quake were women and children, UN says

6 of 7 | Afghan women sit in front of their houses that were destroyed by the earthquake in Zenda Jan district in Herat province, western of Afghanistan. Wednesday, Oct. 11, 2023. Another strong earthquake shock western Afghanistan on Wednesday morning after an earlier one killed more than 2,000 people and flattened whole villages in Herat province in what was one of the most destructive quakes in the country's recent history. (AP Photo(Ebrahim Norozo))

BY RIAZAT BUTT Updated 1:09 AM GMT+5:30, October 13, 2023

ISLAMABAD (AP) — More than 90% of the people killed by a 6.3-magnitude earthquake in western Afghanistan last weekend were women and children, U.N. officials reported Thursday.

Women and children were more likely to have been at home when the quake struck in the morning, said Siddig Ibrahim, the chief of the UNICEF field office in Herat. "When the first earthquake hit, people thought it was an explosion, and they ran into their homes," he said.

Hundreds of people, mostly women, remain missing in Zenda Jan.

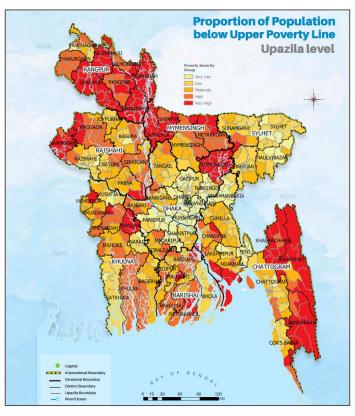
GLOBAL OUAKE

MODEL

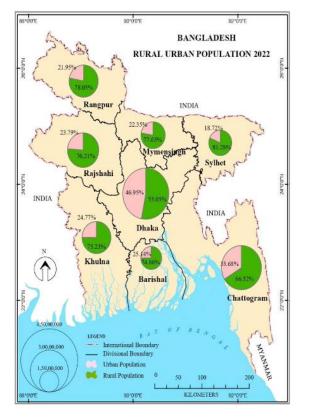
Social vulnerability index

SoVI methodology established by Susan Cutter et al.

Concept	SoVI® variables	$\overline{\mathbf{v}}$
Socioeconomic status	Extreme poverty	
	Overcrowded households	
	No phone	
Gender	% of females	
	Females in work force	
	Ratio F/M income	
Religion and ethnicity	% by ethnicity	
Age	Median age	
Employment lost	Single sector reliance	
Urban/Rural	% urban population	
	Population density	
Renters	% of renters	
Occupation	Legally registered	
	Not legal register	
	Subsistence workers	


Concept	SoVI® variables
Family structure	% Female headed households
	People per household
Education	% illiterates over 15
	Population incompleted highschool
	Complete college degree
Population change	Population change within the decade
Medical services & access	Labor force working in health
	Health coverage
Social dependency	# of Benefits granted
Special needs population	% population with disability
	% population high deficiency
Quality of the built environment	Households no water
	Households no sewer
	Households no garbage
	Households no electricity

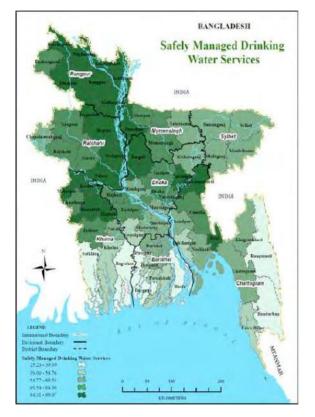
Roncancio, D. J., Cutter, S. L., & Nardocci, A. C. (2020). Social vulnerability in Colombia. *International Journal of Disaster Risk Reduction, 50* (September), 101872. https://doi.org/10.1016/j.ijdrr.2020.101872


de Loyola Hummell, B. M., Cutter, S. L., & Emrich, C. T. (2016). Social Vulnerability to Natural Hazards in Brazil. *International Journal of Disaster Risk Science*, 7(2), 111–122. <u>https://doi.org/10.1007/s13753-016-0090-9</u>

Drivers of social vulnerability: Poverty level & urban/rural

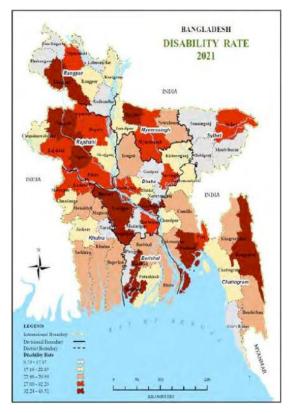
2016 Poverty Maps of Bangladesh

2022 Population & Housing Census



Drivers of social vulnerability: Sanitation and clean water

2021 Bangladesh Sample Vital Statistics


2021 Bangladesh Sample Vital Statistics

Drivers of social vulnerability: Adult literacy and disability

2021 Bangladesh Sample Vital Statistics

2021 Bangladesh Sample Vital Statistics

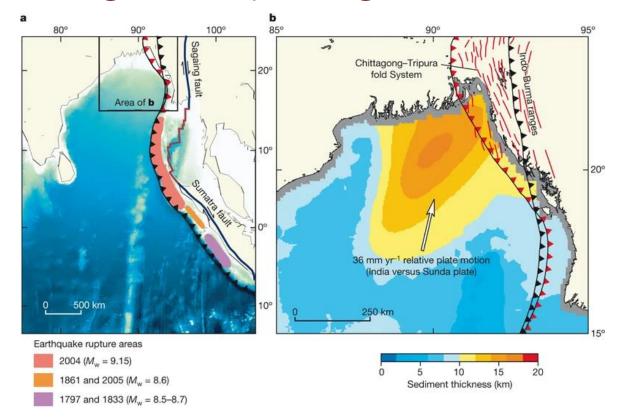
GLOBAL QUAKE MODEL .ORG

INFORM Index

The depiction and use of boundaries are not warranted to be error-free, nor do they necessarily imply official endorsement or acceptance by the United Nations.

Vulnerability: Indicators (32)

Categ ories	Component	Indicators	Source
Socio-Economic	Poverty and Development (4)	Score in Human Development Index (HDI) in 2016 Percentage of poor households in 2017 Percentage of extreme poor households in 2017 Percentage of households are dependent on daily wage labour (unsustainable livelihoods)	BBS, WB
	Economic Dependence (5)	Percentage of unemployed people in 2017 Percentage of EGPP coverage among the poor in 2020 Per capita public aid (in USD) in 2019 Net ODA received as a percentage of GNI in 2020 Volume of remittances (in USD) as a proportion of total GDP	MoDMR, BARC
	Inequality (4)	 Ratio of Gini coefficient from income distribution in 2020 Gender parity index (GPI) for primary school adjusted net attendance ratio (NAR) in 2019 Gender parity index (GPI) for lower secondary school adjusted net attendance ratio (NAR) in 2019 Gender parity index (GPI) for upper secondary school adjusted net attendance ratio (NAR) in 2019 	BBS, BARC
Vulnerable Group	People (3)	Percentage of floating population in 2020 Number of annual average disaster induced Internal Displaced Population (UPC) per 100,000 during 2014- 2020 Number of asylum seeker/refugee in 2021	BBS, NDRCC, RRRC
	hecent Shocks (3)	Annual average affected population (per 10,000) by flood and cyclone during 2014-2020 Number of hully damaged houses by cyclone and flood during 2014-2020 Number of partially damaged houses by cyclone and flood during 2014-2020	NDRCC
	Food Security (2)	Percentage of households with poor dietary diversity (Food group <=4) in 2021 Percentage of population in IPC level 4 (Food scarcity on terms of quality) in 2022	IPC-FAO and FPMU
	Other Vulnerable Group (7)	Percentage of child labour (children age 5- 17) in 2019 Percentage of women (age 15-49 years) reported domesic vollence by male parter in 2017 Percentage of population with diability in 2020 Percentage of opopulation with diability in 2020 Percentage of lotal population (age >65) in 2020 Percentage of holds polytical in 2020	BBS
	作音 Children Under 5 (2)	Under 5 children mortality rate per 1,000 in 2020 Underweight prevalence (severe) <3 SD in 2019 Stunting prevalence (severe)<3 SD in 2019 Insufficient early child development index (% of 36-59 months child) in 2019	BBS

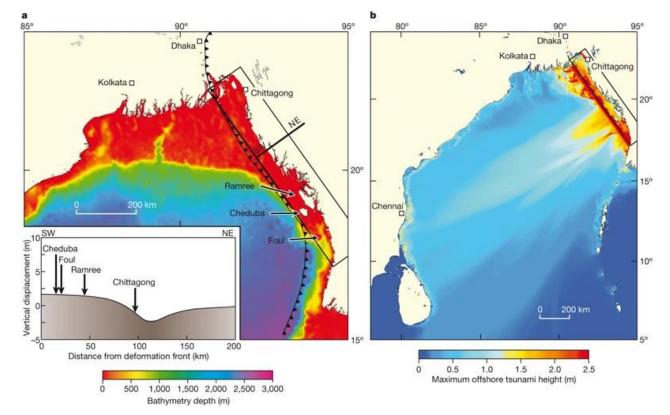

GLOBAL QUAKE MODEL

UAKE MODEL

17

Tectonic setting of the Bay of Bengal

Cummins, P. The potential for giant tsunamigenic earthquakes in the northern Bay of Bengal. Nature 449, 75–78 (2007). https://doi.org/10.1038/nature06088 GLOBAL EARTHQUAKE MODEL


GLOBAL QUAKE MODEL

GEM

GEM

Models for the 1762 Arakan earthquake and tsunami

Cummins, P. The potential for giant tsunamigenic earthquakes in the northern Bay of Bengal. Nature 449, 75–78 (2007). https://doi.org/10.1038/nature06088 GLOBAL EARTHQUAKE MODEL

Thank you!

Please attribute to the GEM Foundation with a link to: <u>https://www.globalquakemodel.org</u>

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) <u>https://creativecommons.org/licenses/by-nc-nd/4.0/</u>

GLOBAL QUAKE MODEL .ORG

Contact

Anirudh Rao <anirudh.rao@globalquakemodel.org>

GLOBAL QUAKE MODEL .ORG

