

Earthquake Hazard and Risk Assessment of Bangladesh TECHNICAL PANEL SESSION #1

GLOBAL EARTHQUAKE MODEL FOUNDATION

9 OCTOBER 2023

GLOBAL EARTHQUAKE MODEL

Previous Efforts, and Need for a Nationwide Earthquake Risk Assessment

GEM

GLOBAL

MODEL

2

Our Methodology

We collect and process data worldwide, related to the main components of risk

Currently GEM has fully functional global model components to assess earthquake impact worldwide Cited terregular to the series of the series

Hazard

Characterizing the potential locations, intensity or magnitude, frequency or probability of earthquakes

Exposure

Characterizing the built environment and people in hazard-prone areas

Vulnerability

Factors which increase the susceptibility of an individual or assets to the impacts of hazards

GLOBAL

QUAKE MODEL

Seismic Hazard Assessment

Active fault map of Bangladesh

Morino et al. (2014). A paleo-seismological study of the Dauki fault at Jaflong, Sylhet, Bangladesh: Historical seismic events and an attempted rupture segmentation model. Journal of Asian Earth Sciences, 91, 218–226. Subduction plate boundaries

Source: Michael Steckler / Lamont-Doherty Earth Observatory

- Identification of active faults
- Historical earthquakes

- Hypothetical future scenarios
- Soil characterization using secondary data
- Ground motion model
- Probabilistic seismic hazard assessment

5

Exposure Modelling

Residential Buildings

Railway Lines

Buildings •

н.

- Residential
- Commercial
- Industrial
- Healthcare
- Education
- Infrastructure
 - Roads
 - Railways
- Population
- 2022 Census

Attributes

- Location
 - Typology
 - Valuation
- Age

×.

GEM

Seismic Vulnerability Analysis

7

Seismic Intensity

Percentage Distribution of Main Dwelling Structure by Materials of Wall and by Year

GEM

GLOBAL

QUAKE

MODEL

Seismic Risk Assessment; Hazard and Risk Maps

AVERAGE ANNUAL LOSSES

AVERAGE ANNUAL LOSS RATIOS

BANGLADESH

SOCIAL INDICATORS

-1	Population 164.7M	~7	Population Growth 1.05%/year
î	GDP 250.0B USD		GDP per Capita 1,517 USD
Ź	GINI Index 32.1		Human Development Index 0.800

RISK INDICATORS

	Replacement cost	Avg. annual loss	Avg. annual loss ratio
	(Billion USD)	(Thousand USD)	(‰)
Residential	358.0	516,815	1.444
Commercial	27.5	36,888	1.340
Industrial	15.9	5,522	0.348

GEM has published division-level maps of seismic hazard, exposure, and risk for Bangladesh

н.

The spatial resolution will be improved to upazila level in this project

Request for Data from BBS and Previous Ministry Projects

- **BBS**: Population and Housing Census (PHC) 2022 Upazila level tables
- **BBS**: Household Income and Expenditure Survey (HIES) 2022 Microdata
- CDMP: Engineering Geological Maps for Dhaka, Chittagong, and Sylhet City Corporations
- **CDMP**: Engineering Geological Maps for Bogra, Dinajpur, Mymensingh, Rajshahi, Rangpur, and Tangail Pourashava and City Corporation Areas
- CDMP: Building Inventory for Dhaka, Chittagong, and Sylhet
- **MoDMR**: Any other datasets you would like us to include in the risk assessment

Gem

9

Project Activities (August to December 2023)

- Needs and Gaps Assessment (Aug–Sep 2023)
- Technical Panel Formation and Initial Consultations (Oct–Dec 2023)
- Seismic Hazard Mapping (Aug-Nov 2023)
- Exposure Mapping (Aug-Oct 2023)
- Seismic Vulnerability Assessment (Oct-Nov 2023)
- Seismic Risk Mapping and Interpretation (Nov–Dec 2023)
- Stakeholder Consultation and Validation; Preliminary Model Dissemination and Training Workshop (~Feb 2024)

Technical Panel Formation and Engagement

- Panel formation Technical Leadership by MoDMR
- Engagement Wider Expertise on Earthquake in BD
- Online sessions 3-5 Online Session
- Workshops 2-3 Days with different stakeholders

Highly Relevant Domain Expertise of the Technical Panel

- Ansary, M. A., & Meguro, K. (2003). Economic consequences of large earthquakes for Dhaka, Bangladesh. Bulleting of the Research Center for Earthquake Resistant Structures, 36(2003), 177–193.
- Akhter, S. H. (2008). Earthquakes of Dhaka. In Environment of Capital Dhaka—Plants, wildlife, gardens, parks, air, water, and earthquakes (pp. 421–426).
- Sadat, M. R., Huq, M. S., & Ansary, M. A. (2010). Seismic vulnerability assessment of buildings of Dhaka city. Journal of Civil Engineering (IEB), 38(2), 159–172.
- Sarker, J. K., Ansary, M. A., Rahman, M. S., & Safiullah, A. M. M. (2010). Seismic hazard assessment for Mymensingh, Bangladesh. *Environmental Earth Sciences*, 60(3), 643–653. https://doi.org/10.1007/s12665-009-0204-4
- Sarker, J. K., Ansary, M. A., Islam, M. R., & Safiullah, A. M. M. (2010). Potential losses for Sylhet, Bangladesh in a repeat of the 1918 Srimangal earthquake. *Environmental Economics*, 1(1).
- Ansary, M. A., & Rahman, M. S. (2013). Site amplification investigation in Dhaka, Bangladesh, using H/V ratio of microtremor. *Environmental Earth Sciences*, 70(2), 559–574. https://doi.org/10.1007/s12665-012-2141-x
- Morino, M., Maksud Kamal, A. S. M., Akhter, S. H., Rahman, M. Z., Ali, R. M. E., Talukder, A., Khan, M. M. H., Matsuo, J., & Kaneko, F. (2014). A paleo-seismological study of the Dauki fault at Jaflong, Sylhet, Bangladesh: Historical seismic events and an attempted rupture segmentation model. *Journal of Asian Earth Sciences*, 91, 218–226. https://doi.org/10.1016/j.jseaes.2014.06.002
- Rahman, M. Z., Siddiqua, S., & Maksud Kamal, A. S. M. (2015). Liquefaction hazard mapping by liquefaction potential index for Dhaka City, Bangladesh. *Engineering Geology*, 188, 137–147. https://doi.org/10.1016/j.enggeo.2015.01.012
- Barua, U., Akhter, M. S., & Ansary, M. A. (2016). District-wise multi-hazard zoning of Bangladesh. Natural Hazards, 82(3), 1895–1918. https://doi.org/10.1007/s11069-016-2276-2
- Steckler, M. S., Mondal, D. R., Akhter, S. H., Seeber, L., Feng, L., Gale, J., Hill, E. M., & Howe, M. (2016). Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges. *Nature Geoscience*, *9*(8), 615–618. <u>https://doi.org/10.1038/ngeo2760</u>
- Haque, D. M. E., Khan, N. W., Selim, M., Maksud Kamal, A. S. M., & Chowdhury, S. H. (2020). Towards Improved Probabilistic Seismic Hazard Assessment for Bangladesh. Pure and Applied Geophysics, 177(7), 3089–3118. https://doi.org/10.1007/s00024-019-02393-z
- Rahman, M. Z., Siddiqua, S., & Maksud Kamal, A. S. M. (2020). Seismic source modeling and probabilistic seismic hazard analysis for Bangladesh. *Natural Hazards*, 103(2), 2489–2532. https://doi.org/10.1007/s11069-020-04094-6
- Mannan, S., Haque, D. M. E., & Sarker, N. C. D. (2021). A study on national DRR policy in alignment with the SFDRR: Identifying the scopes of improvement for Bangladesh. *Progress in Disaster Science*, *12*, 100206. <u>https://doi.org/10.1016/j.pdisas.2021.100206</u>

Siddique, S., & Sharmin, F. (2023). Seismic Hazard Maps of Bangladesh. Design Planning and Management Consultants Ltd. http://dx.doi.org/10.13140/RG.2.2.23257.29286

13

Technical Panel – Proposed Sessions

- Oct 09 Introductory session (today)
- Oct 3rd/4th week Probabilistic seismic hazard and scenarios
- Nov 3rd/4th week Exposure and seismic vulnerability
- Dec 2nd/3rd week Seismic risk and social vulnerability
- Feb 2024 In person workshops, data and model transfer

GEM

Further clarification, questions and answers

GLOBAL QUAKE MODEL

Thank you!

Please attribute to the GEM Foundation with a link to: <u>https://www.globalquakemodel.org</u>

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) <u>https://creativecommons.org/licenses/by-nc-nd/4.0/</u>

