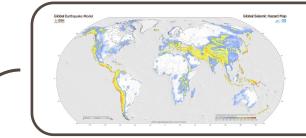


EARTHQUAKE HAZARD & RISK ASSESSMENT OF BANGLADESH

TECHNICAL PANEL SESSION #3 EXPOSURE, SEISMIC VULNERABILITY, SOCIAL VULNERABILITY

GLOBAL EARTHQUAKE MODEL FOUNDATION

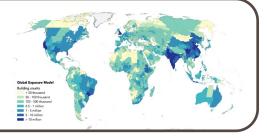
30 NOVEMBER 2023

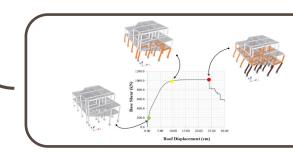


OPFNOUAKE

Three components of seismic risk

Hazard

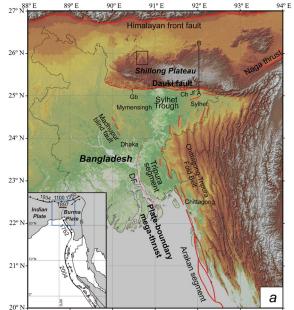

Characterizing the potential locations, intensity or magnitude, frequency or probability of earthquakes


Seismic Risk

The risk occurs when there is a spatial and temporal overlap of these three elements

Exposure

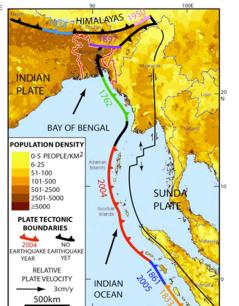
Characterizing the built environment and people in hazard-prone areas



Vulnerability

Factors which increase the susceptibility of an individual or assets to the impacts of hazards GLOBAL EARTHOUAKE MODEL

Probabilistic seismic hazard assessment


GLOBAL QUAKE MODEL

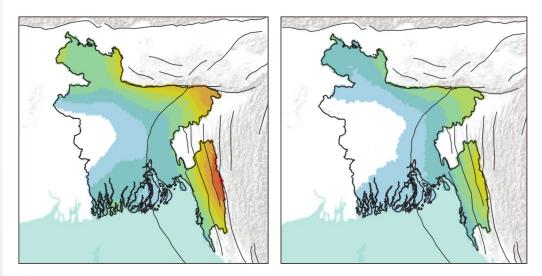
GEM

Active fault map of Bangladesh

Morino et al. (2014). A paleo-seismological study of the Dauki fault at Jaflong, Sylhet, Bangladesh: Historical seismic events and an attempted rupture segmentation model. Journal of Asian Earth Sciences, 91, 218–226.

Subduction plate boundaries

Source: Michael Steckler / Lamont-Doherty Earth Observatory


- Identification of active faults
- Historical earthquakes

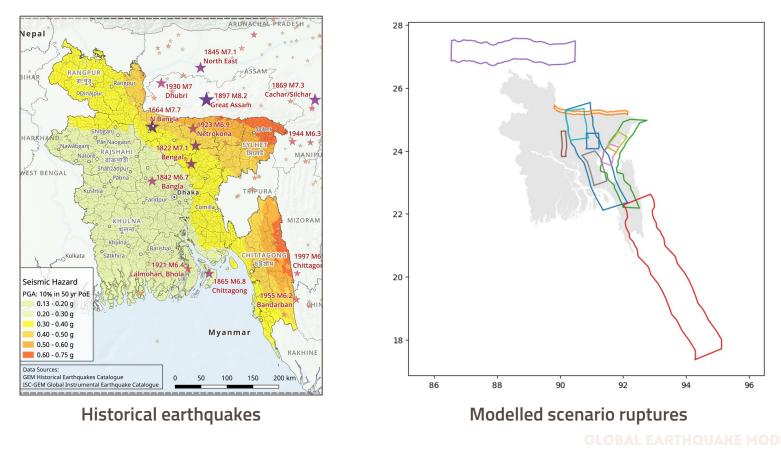
11

н.

- Hypothetical future scenarios
- Soil characterization using secondary data
- Ground motion model
- Probabilistic seismic hazard assessment

Probabilistic seismic hazard assessment

Nath & Thingbaijam (2012)

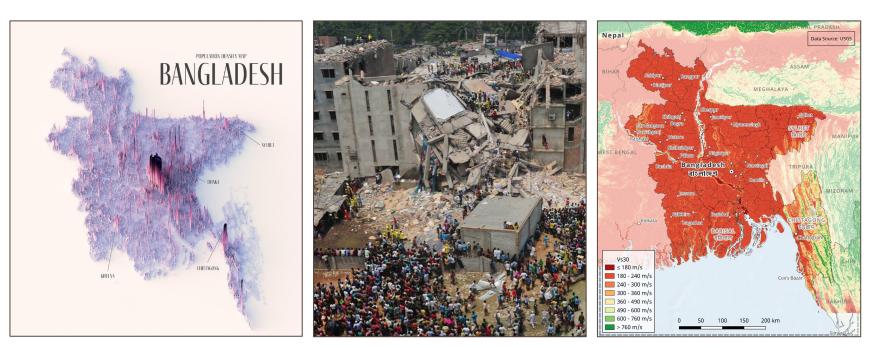

Updated model (GEM, 2023)

- Identification of active faults
- Historical earthquakes
- Hypothetical future scenarios
- Soil characterization using secondary data
- Ground motion model
- Probabilistic seismic hazard assessment

GLOBAL QUAKE MODEL

Earthquake scenario assessment

GLOBAL QUAKE MODEL



Exposure Model

BUILDINGS POPULATION INFRASTRUCTURE

Exposure – Context

GLOBAL QUAKE MODEL .ORG

High population across the country, with a particular concentration in Dhaka

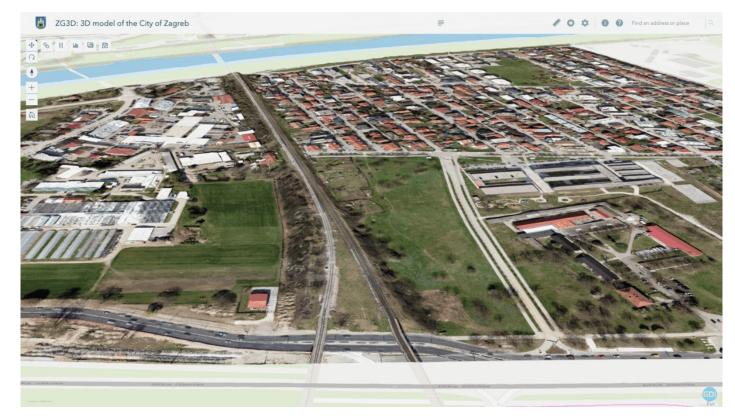
Bangladesh population: 165 million (2022 census) Dhaka metropolitan area: 22.5 million (2022 census) Rapid urbanization coupled with poor quality RC construction & slums

Collapse of Rana Plaza in Savar, Dhaka led to 1,134 fatalities and around 2,500 injuries

80% of the country is a river delta – deep deposits of soft clay & silt

Potential for significant amplification of ground motions and liquefaction **OUARE MODEL**

Exposure – Structural and physical attributes


It is necessary to identify the physical characteristics of the built environment, to classify each exposed element according to its seismic fragility and vulnerability

Some of the main attributes that need to be identified are: construction material, structural system, height, and code compliance

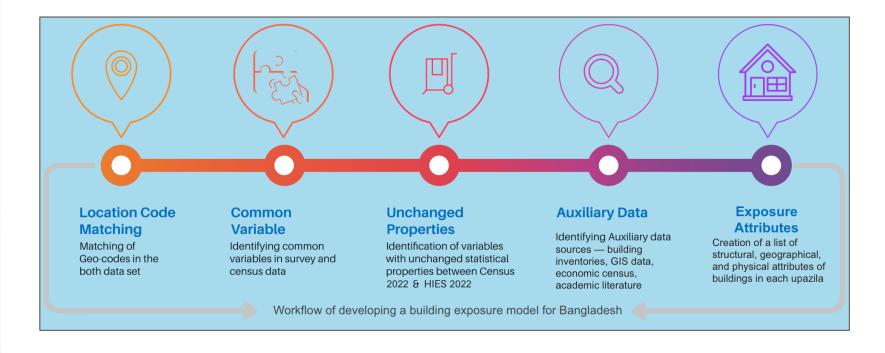
Exposure – Conceptual framework

https://zagreb.gdi.net/zg3d/

Exposure – Small scale building inventory compilation

GLOBAL QUAKE MODEL .ORG

GEM

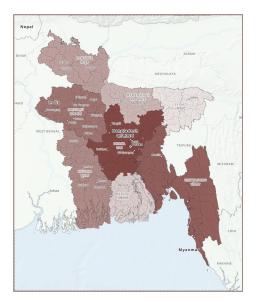

Building by building capture tool

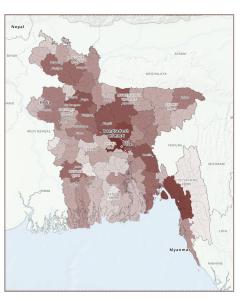
Urban exposure models

Android App: IDCT Direct Observation Survey https://play.google.com/store/apps/details?id=org.globalquakemodel.org.idctdo&hl=en

10

Exposure – Model development workflow at national scale




GLOBAL QUAKE MODEL

GEM

Exposure – GEM's existing coverage for Bangladesh

Buildings

- Residential
- Commercial
- Industrial

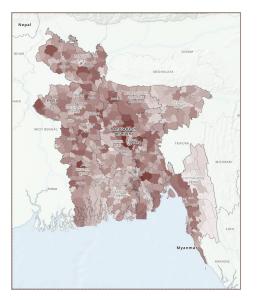
Attributes

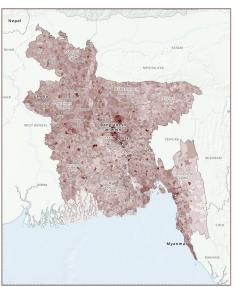
12

- Location
- Typology
- Valuation
- (Height)
- Age
- Infrastructure 🗉
- Population
- 2011 Census

GLOBAL QUAKE MODEL

GEM


Residential Exposure (2018) 2011 Census


Admin Level 1 – Division (8)

Residential Exposure (2023)

2011 Čensus Admin Level 2 – Zila (64)

Exposure – Additional coverage and improvements

Buildings

- Residential
- Commercial
- Industrial
- Healthcare
- Education
- Infrastructure •
- Roads
- Railways

Attributes

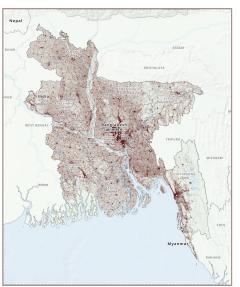
н.

- Location
 - Typology
- Valuation
- Height
- Age
- Population
- 2022 Census

GLOBAL QUAKE MODEL

GEM


Residential Exposure (2024) 2022 Census


Admin Level 3 – Upazila

Residential Exposure (2024)

2022 Čensus Admin Level 4 – Union/Paurashava

Exposure – Enhanced spatial resolution for flood risk

Buildings

- Residential
- Commercial
- Industrial
- Healthcare
- Education
- Infrastructure 🛛
- Roads
- Railways

Attributes

10

- Location
 - Typology
- Valuation
- Height
- Age
- Population
- 2022 Census

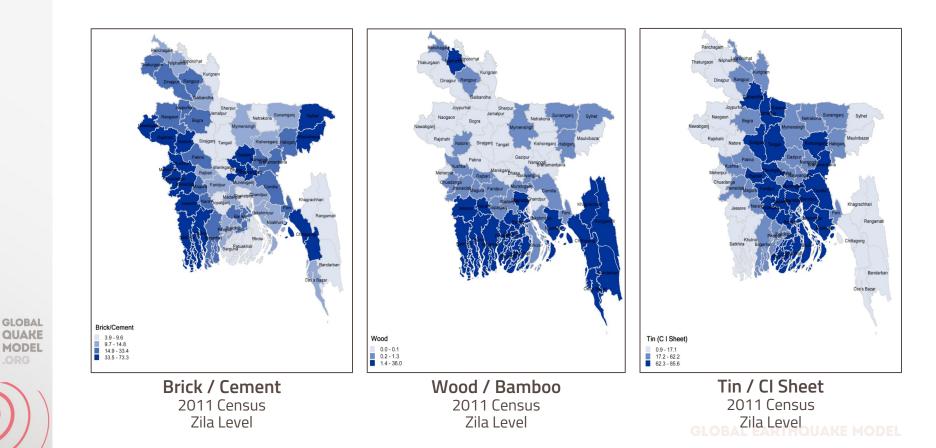
GLOBAL QUAKE MODEL

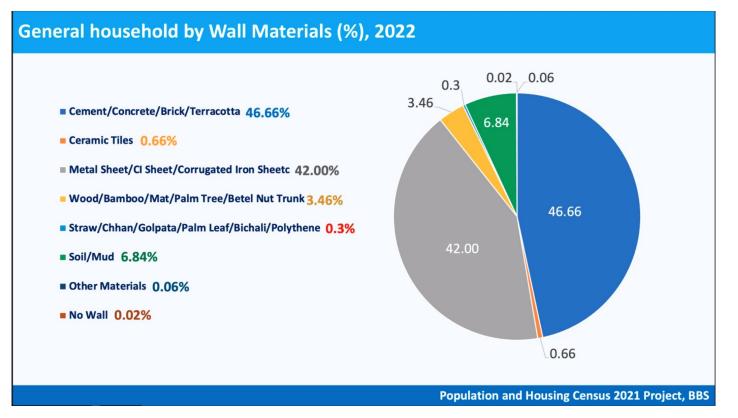
GEM

Residential Exposure (2024) 2022 Census Admin Level 5 – Villages Residential Exposure (2024) 2022 Census

Admin Level 6 – Enumeration Areas

Exposure – Inferring construction type from wall, roof, floor


		Settlemer	nt Type					Divi	sion			
Housing Materials	Total	Rural	City Corporation	Pourashava / Other Urban	Barisal	Chittagong	Dhaka	Khulna	Mymensingh	Rajshahi	Rangpur	Sylhet
Floor Materials												
Mud / Sand	52.30	63.12	3.25	27.20	70.71	49.75	29.76	53.79	69.14	65.45	70.00	55.46
Cement / Concrete / Brick / Burnt mud	41.42	33.13	72.77	63.95	25.04	40.77	59.28	42.16	27.81	32.41	27.89	41.03
Tiles / Mosaic / Marble / Granite / Furnish wood	4.34	1.54	22.88	7.79	2.06	4.35	8.75	3.77	1.43	1.70	1.54	2.84
Wood / Bamboo / Mat / Palm-beteInut bole	1.74	1.99	1.00	1.00	2.00	4.54	2.14	0.25	1.04	0.40	0.55	0.63
Others	0.19	0.23	0.10	0.06	0.18	0.60	0.07	0.03	0.58	0.05	0.02	0.03
Total	100	100	100	100	100	100	100	100	100	100	100	100
Wall Materials												
Cement / Concrete / Brick / Burnt mud	43.63	34.52	86.89	63.70	24.79	35.56	51.49	59.72	26.43	42.46	38.52	53.35
Metal sheet / CI sheet	42.86	49.47	9.58	29.27	67.71	43.00	45.44	22.26	67.63	32.82	46.44	32.15
Mud / Soil	8.01	9.97	0.17	2.94	0.77	8.24	2.21	9.89	3.81	22.29	7.32	9.92
Wood / Bamboo / Mat / Palm-beteInut bole	4.76	5.39	1.65	3.41	6.02	12.25	0.18	7.20	1.64	1.66	7.22	3.79
Ceramic tiles / Furnish wood	0.47	0.31	1.62	0.57	0.47	0.69	0.58	0.45	0.29	0.24	0.27	0.45
Straw / Chaff / Gal leaves / Palm leaves / Bic	0.19	0.24	0.04	0.05	0.17	0.15	0.05	0.31	0.13	0.41	0.18	0.30
Other materials	0.05	0.06	0.03	0.04	0.05	0.02	0.04	0.15	0.01	0.11	0.02	0.02
No wall at all	0.03	0.03	0.01	0.02	0.02	0.08	0.01	0.02	0.05	0.02	0.01	0.02
Total	100	100	100	100	100	100	100	100	100	100	100	100
Roof Materials												
Metal sheet / CI sheet / Tin	79.35	86.89	34.96	67.21	87.08	77.49	68.93	68.21	92.71	86.38	94.29	84.58
Cement / Concrete	18.96	11.32	63.66	31.40	11.88	20.37	30.55	25.57	5.80	12.77	4.77	14.48
Wood / Bamboo / Mat / Golpata / Palm leaf / Polythene	0.79	0.86	0.33	0.71	0.53	1.87	0.16	1.28	1.36	0.18	0.64	0.76
Handmade tiles / Tali	0.38	0.46	0.04	0.17	0.01	0.03	0.01	3.05	0.01	0.11	0.02	0.00
Others	0.02	0.02	0.03	0.02	0.01	0.03	0.01	0.02	0.02	0.03	0.01	0.02
No roof at all	0.50	0.44	0.99	0.49	0.48	0.21	0.34	1.87	0.11	0.54	0.27	0.16
Total	100	100	100	100	100	100	100	100	100	100	100	100


15

Exposure – Wall material geographical variation (2011)

GEM

Exposure – Wall materials (2022)

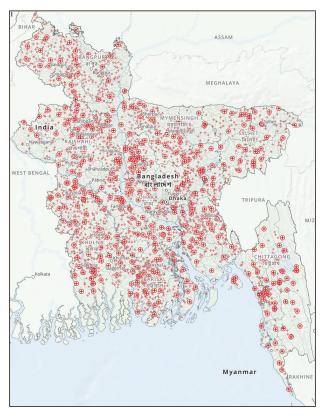
Source: Population and Housing Census 2022, BBS. Courtesy: Md. Dilder Hossain

GLOBAL QUAKE MODEL

17

Exposure – Slum dwellings and floating population

Type of dwelling unit	Slum C	Census 2014	Slum Census 1997			
	Household	Percentage	Household	Percentage		
Jhupri	36875	6.20	142476	42.61		
Katcha/Tin	371485	62.45	178586	53.40		
Semi-pucca	157243	26.43	10319	3.08		
Рисса	24169	4.06	3050	0.91		
Others	5089	0.86	NA	NA		
National	594861	100.00	334431	100.00		


GLOBAL QUAKE MODEL .ORG

NB: Tong, Chhai etc. included in katcha structure.

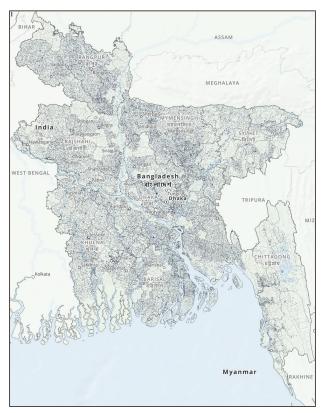
Source: Census of Slum Areas and Floating Population 2014, BBS

GLOBAL QUAKE MODEL

Exposure – Healthcare facilities

Primary data source:

 Hospitals & Clinics Management Section, Directorate General of Health Services (DGHS)

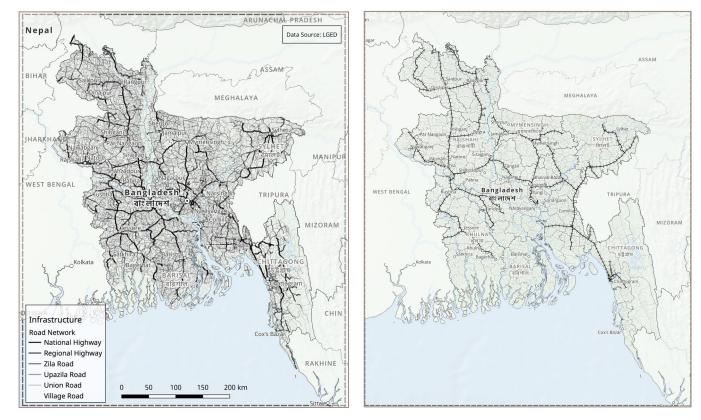


19

Exposure – Educational facilities

Primary data sources:

- Bangladesh Bureau of Educational Information and Statistics (BANBEIS), Ministry of Education
- Bangladesh Primary Education Statistics & Annual Primary School Census 2021, Ministry of Primary and Mass Education


Key Statistics (public)

18,907 (627)	Secondary Education
137	English Medium School
1,446 (64)	School & College
3,301 (637)	College Education
9,268 (3)	Madrasah Education
2,547 (322)	Technical-Vocational (Independent)
826 (129)	Professional Education
209 (94)	Teacher Education
164 (53)	University Education
5,272 (369)	Attached Vocational
118,891 (65,566)	Primary Schools

GLOBAL QUAKE MODEL .ORG

Exposure – linear infrastructure networks

Primary data sources:

- Local Government Engineering Dept (LGED)
- OpenStreetMap (OSM)

GLOBAL QUAKE MODEL

Road network

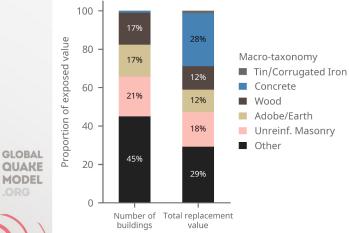
Railway network

Seismic Vulnerability Model

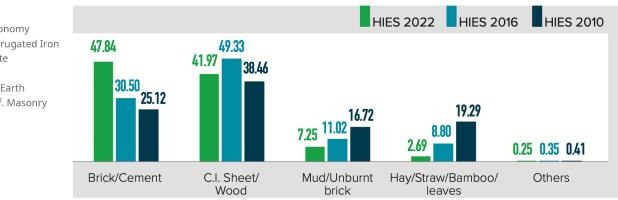
DAMAGE ECONOMIC LOSS FATALITIES, INJURIES & DISPLACEMENT

Seismic fragility and vulnerability

Seismic *fragility* represents the likelihood of an element exposed to seismic hazard to suffer *damage* due to ground shaking. Similarly, seismic *vulnerability* represents the likelihood of an element exposed to seismic hazard to suffer *losses* due to ground shaking

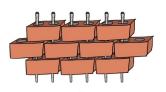

GLOBAL QUAKE MODEL

Seismic vulnerability analysis

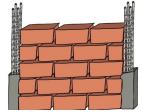

Seismic Intensity

GEM

Percentage Distribution of Main Dwelling Structure by Materials of Wall and by Year


GEM

Factors affecting damage level – construction factors


Reinforced concrete

Wood

Unreinforced masonry

Reinforced masonry

Confined masonry

Main material of construction

GLOBAL QUAKE MODEL .ORG

AL EARTHQUAKE MODEL

25

Factors affecting damage level – construction factors

GEM

GLOBAL

QUAKE

MODEL

Moment frames

Walls

Infilled moment frames

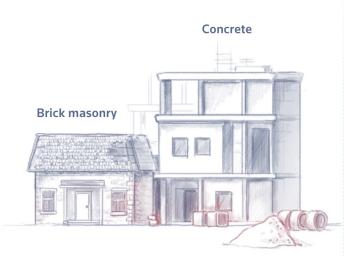
Dual systems (Moment frames and walls)

Lateral load resisting system (LLRS)

Factors affecting damage level – construction factors

Number of stories

Height


Building code complaince

Ductility level

Factors affecting damage level – construction factors

CONSTRUCTION FACTORS

Steel

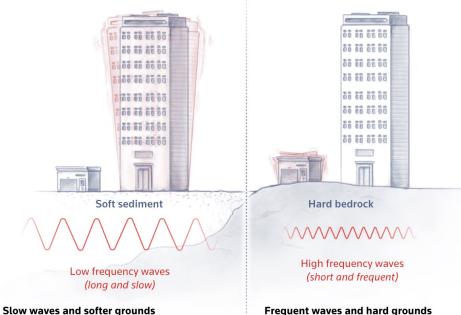
Too stiff to sway

Brick masonry and concrete structures are rigid, which hinders their ability to absorb the energy from seismic waves. Steel is often used to reinforce these buildings, but they may still collapse during major earthquakes.

Flexible and strong

Flexibility is key to absorbing quake energy without collapsing. Wood can flex without breaking, while steel can expand and retract, making them effective quake-resistant materials when used correctly.

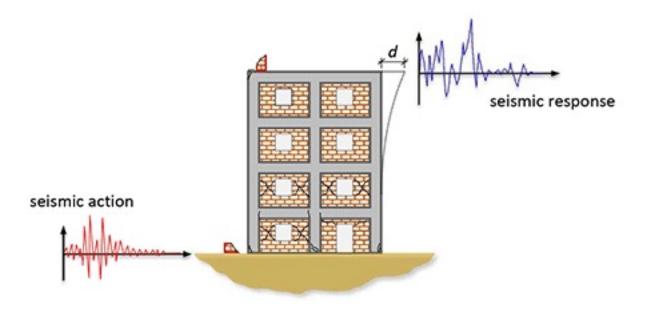
GEM


Factors affecting damage level – natural factors

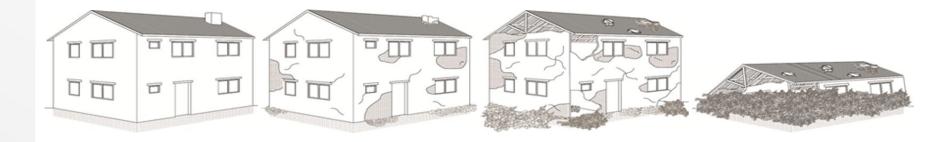
NATURAL FACTORS

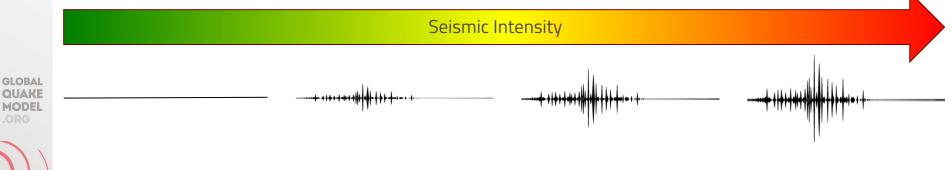
Taller buildings resonate with slow, low frequency seismic waves, which are amplified

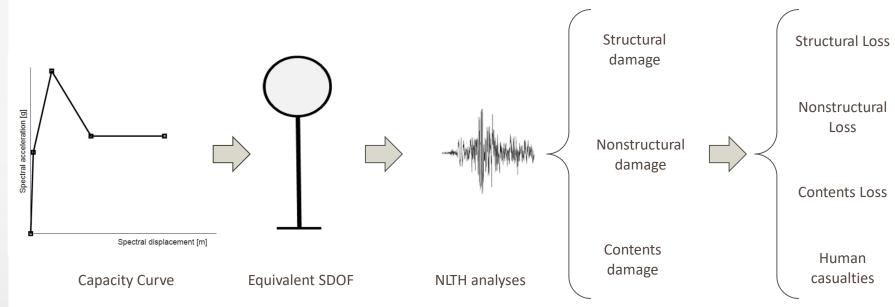
in the ground.


when the waves travel through soft sediments

Small buildings are more susceptible to fast, high frequency waves, especially travelling through hard bedrock.

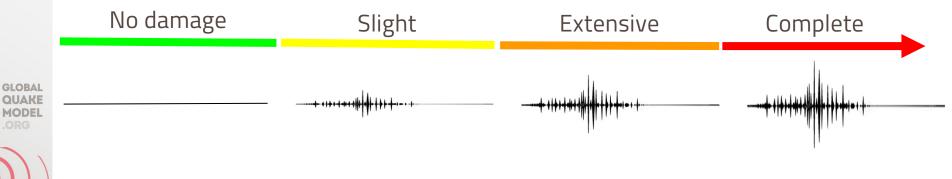

29



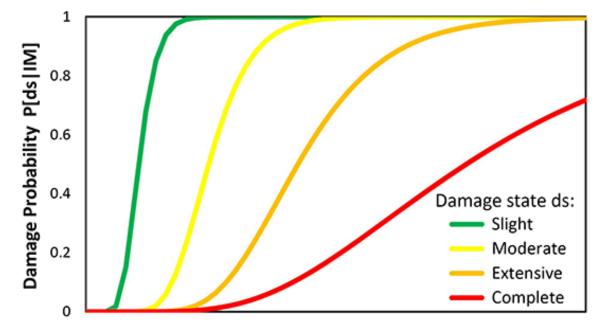

GLOBAL QUAKE MODEL .ORG

Meslem, A., & Lang, D. H. (2017). Physical Vulnerability in Earthquake Risk Assessment. Oxford Research Encyclopedia of Natural Hazard Science. Oxford Research Encyclopedias. https://doi.org/10.1093/acrefore/9780199389407.013.71

GLOBAL QUAKE MODEL .ORG

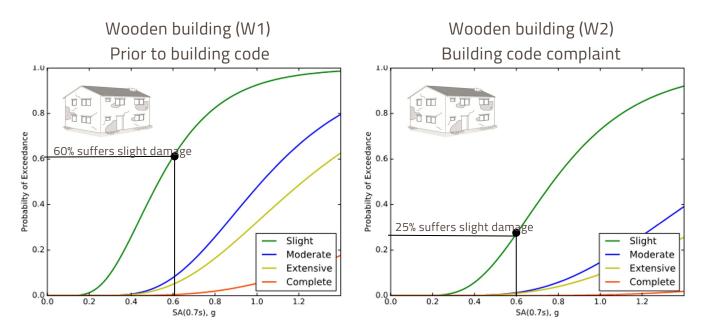

* A complete description of the framework is available through the documentation page at https://docs.openquake.org/vulnerability/vulnerability_methodology_summary.html

32


DAMAGE STATE

GEM

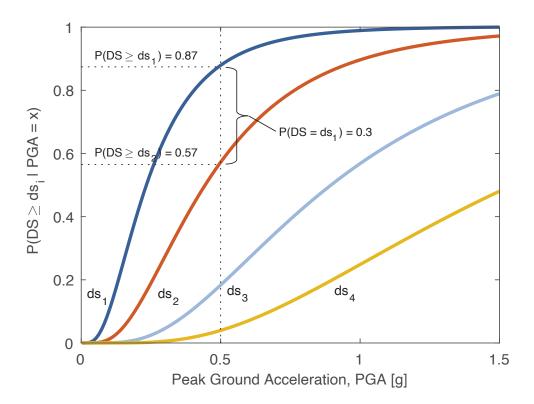
Seismic fragility functions



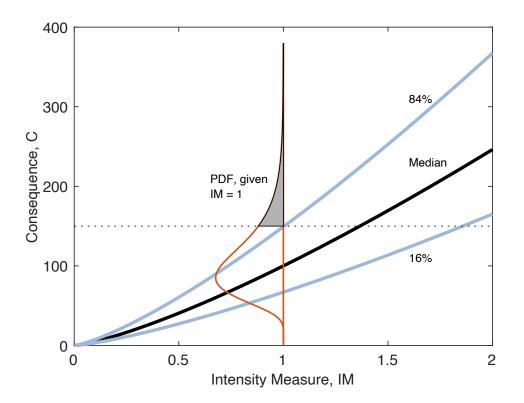
Intensity Measure (IM)

e.g. Peak Ground Acceleration PGA, Spectral Acceleration S_a, Spectral Displacement S_d ...

Meslem, A., & Lang, D. H. (2017). Physical Vulnerability in Earthquake Risk Assessment. Oxford Research Encyclopedia of Natural Hazard Science. Oxford Research Encyclopedias. https://doi.org/10.1093/acrefore/9780199389407.013.71


Seismic fragility functions

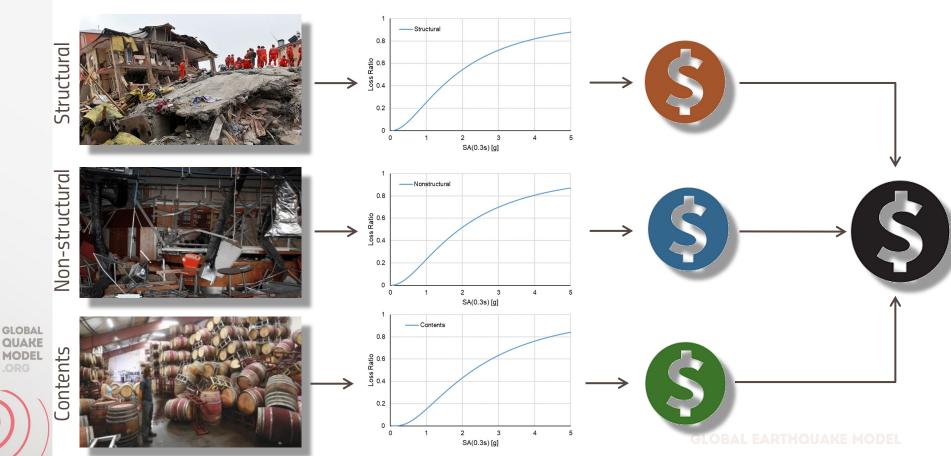
The structural attributes of a building (e.g. construction material, construction system, height, design regulations) directly influence its fragility, making it more or less vulnerable to ground agitation.


Seismic fragility functions

Baker, J. W., Bradley, B. A., & Stafford, P. J. (2021). Seismic hazard and risk analysis. Cambridge University Press. https://doi.org/10.1017/9781108425056

Seismic vulnerability functions

Baker, J. W., Bradley, B. A., & Stafford, P. J. (2021). Seismic hazard and risk analysis. Cambridge University Press. https://doi.org/10.1017/9781108425056


GLOBAL EARTHQUAKE MODEL

GLOBAL QUAKE MODEL .ORG

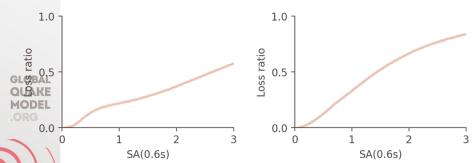
Structural, nonstructural, and contents vulnerability

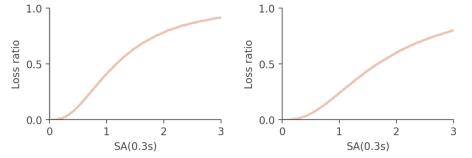
GEM

GEM's vulnerability database \rightarrow Economic losses

Bamboo houses

Reinforced concrete buildings

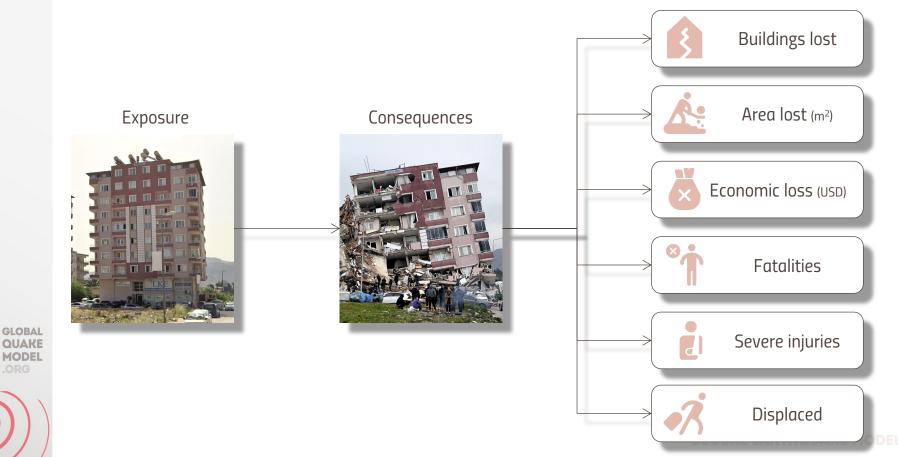



Rubble stone masonry

Clay brick masonry

GLOBAL EARTHQUAKE MODEL

GEM's vulnerability database → Human impact


High fatality rates (Concrete)

Moderate fatality rates (Masonry)

Low fatality rates (Wood)

EARTHQUAKE MODEL

Risk metrics covered by GEM's vulnerability database

Social Vulnerability Model

MOTIVATION SOVI METHODOLOGY SOCIO-ECONOMIC VARIABLES

GLOBAL OUAKE

MODEL

Disparate impacts on different groups

More than 90% of people killed by western Afghanistan quake were women and children, UN says

6 of 7] Afghan women sit in front of their houses that were destroyed by the earthquake in Zenda Jan district in Herat province, western of Afghanistan, Wednesday, Oct. 11, 2023. Another strong earthquake shook western Afghanistan on Wednesday morning after an earlier one killed more than 2,000 people and flattened whole villages in Herat province in what was one of the most destructive quakes in the country's recent histry. (AP Photo(Phanhin Noroza))

BY RIAZAT BUTT Updated 1:09 AM GMT+5:30, October 13, 2023

ISLAMABAD (AP) — More than 90% of the people killed by a 6.3-magnitude earthquake in western Afghanistan last weekend were women and children, U.N. officials reported Thursday.

Women and children were more likely to have been at home when the quake struck in the morning, said Siddig Ibrahim, the chief of the UNICEF field office in Herat. "When the first earthquake hit, people thought it was an explosion, and they ran into their homes," he said.

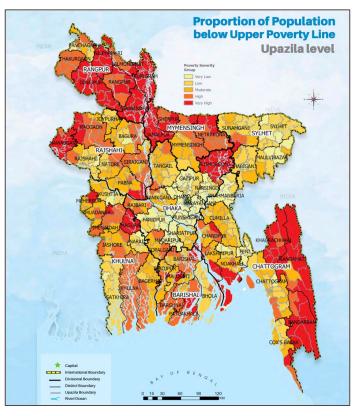
Hundreds of people, mostly women, remain missing in Zenda Jan.

Social vulnerability index

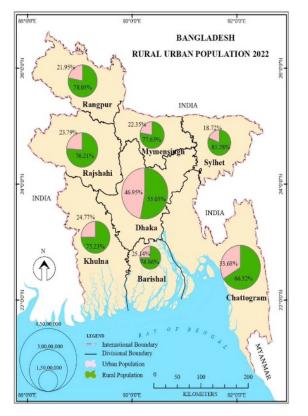
SoVI methodology established by Susan Cutter et al.

Concept	SoVI® variables	$\overline{}$
Socioeconomic status	Extreme poverty	
	Overcrowded households	
	No phone	
Gender	% of females	
	Females in work force	
	Ratio F/M income	
Religion and ethnicity	% by ethnicity	
Age	Median age	
Employment lost	Single sector reliance	
Urban/Rural	% urban population	
	Population density	
Renters	% of renters	
Occupation	Legally registered	
	Not legal register	
	Subsistence workers	

Concept	SoVI® variables	
Family structure	% Female headed households	
	People per household	
Education	% illiterates over 15	
	Population incompleted highschool	
	Complete college degree	
Population change	Population change within the decade	
Medical services & access	Labor force working in health	
	Health coverage	
Social dependency	# of Benefits granted	
Special needs population	% population with disability	
	% population high deficiency	
Quality of the built environment	Households no water	
	Households no sewer	
	Households no garbage	
	Households no electricity	

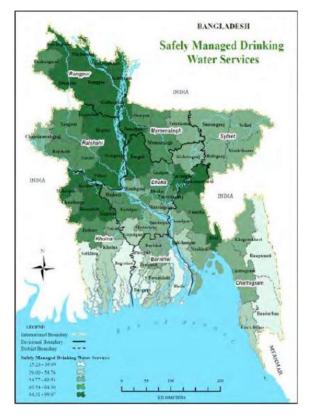

Roncancio, D. J., Cutter, S. L., & Nardocci, A. C. (2020). Social vulnerability in Colombia. *International Journal of Disaster Risk Reduction*, *50*(September), 101872. <u>https://doi.org/10.1016/j.ijdrr.2020.101872</u>

de Loyola Hummell, B. M., Cutter, S. L., & Emrich, C. T. (2016). Social Vulnerability to Natural Hazards in Brazil. *International Journal of Disaster Risk Science*, 7(2), 111–122. <u>https://doi.org/10.1007/s13753-016-0090-9</u>


GLOBAL QUAKE MODEL

Drivers of social vulnerability: Poverty level & urban/rural

2016 Poverty Maps of Bangladesh

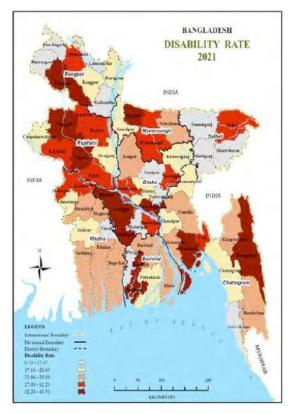

2022 Population & Housing Census

GLOBAL QUAKE MODEL .ORG

Drivers of social vulnerability: Sanitation and clean water

2021 Bangladesh Sample Vital Statistics

46


2021 Bangladesh Sample Vital Statistics

Drivers of social vulnerability: Adult literacy and disability

2021 Bangladesh Sample Vital Statistics

47

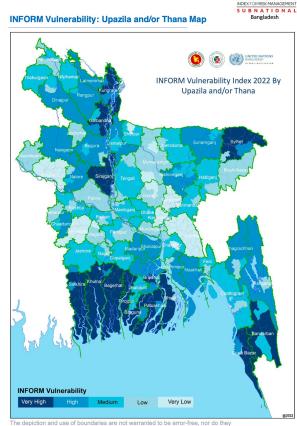
2021 Bangladesh Sample Vital Statistics

GLOBAL QUAKE MODEL .ORG

GLOBAL QUAKE MODEL

Components, drivers, and direction of influence

Components, drivers, ar	d their direction	of influence	(cardinality) on social
vulnerability according to SoVI® Colombia.			


Component name	Cardinality	Drivers	Factor correlation*
Under-development	+	QNOWATER	,731
		SSBENPC	,713
		EMPLOY	-,692
		QILLIT	,669
		QBORNOD	-,596
		QOVERC	,587
		Q_FEMLF	-,569
		QNOSEWER	,568
Urban educated female	-	QFEMALE	,772
population		QURBAN	,772
		QCOLLEGE	,709
		QFHH	,677
		NOGARB	-,666
		QED12LESS	,533
Indian population	+	QINDIAN	,811
		QFHOUSE	-,648
		QNOELEC	,576
		QFORBORN	,509
Recent migration and violence	+	POPMIG	,872
displacement		QDESVIOL	,841
		RENTER	,716
Low percentage of special needs	-	QSPCHIGH	-,669
population and extreme poverty.		QEXPOV	-,620
Age dependency	11	QAGEDEP	,773
		PPUNIT	-,715
		QHSREG	,633
Black population and ethnic	+	QBLACK	,758
minorities		WHITE	-,555
		QMINOR	,514

*Only correlations >0,500 are listed in the table.

SoVI methodology

- Multicollinearity test to reduce variables
- Factor analysis using principal component analysis (PCA)
- Identify most significant indicators (correlation >0.5 and >-0.5) driving each component
- Cardinality (±) is decided according to the influence of the factor on the general social vulnerability
- SoVI® is calculated as the sum of the scores of the components for each upazila

INFORM Index

The depiction and use of boundaries are not warranted to be error-free, nor do they necessarily imply official endorsement or acceptance by the United Nations.

INF

Vulnerability: Indicators (32)

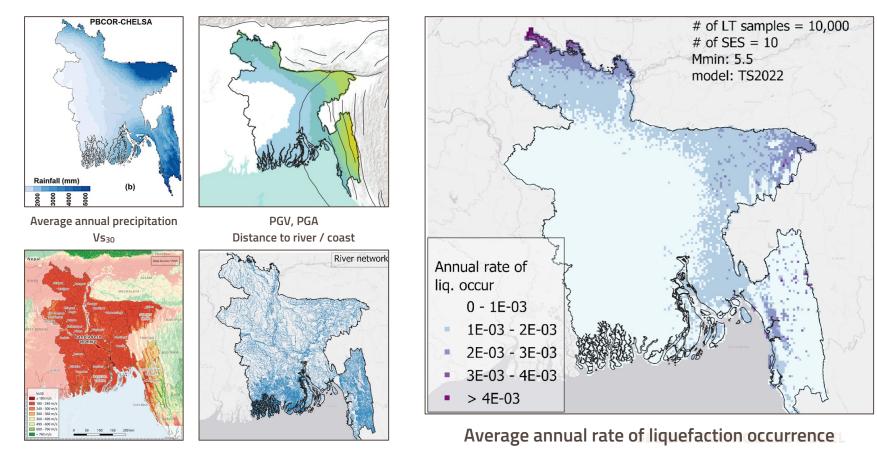
Categ ories	Component	Indicators	Source
	Poverty and Development (4)	Score in Human Development Index (HDI) in 2016 Percentage of poor households in 2017 Percentage of extreme poor households in 2017 Percentage of households are dependent on daily wage labour (unsustainable livelihoods)	BBS, WB
Socio-Economic	Economic Dependence (5)	Percentage of unemployed people in 2017 Percentage of EGPP coverage among the poor in 2020 Per capita public aid (in USD) in 2019 Net ODA received as a percentage of GNI in 2020 Volume of remittances (in USD) as a proportion of total GDP	MoDMR, BARC
	Inequality (4)	Ratio of Gini coefficient from income distribution in 2020 Gender parity index (GPI) for primary school adjusted net attendance ratio (NAR) in 2019 Gender parity index (GPI) for lower secondary school adjusted net attendance ratio (NAR) in 2019 Gender parity index (GPI) for upper secondary school adjusted net attendance ratio (NAR) in 2019	BBS, BARC
Vulnerable Group	People (3)	Percentage of floating population in 2020 Number of annual average disaster induced Internal Displaced Population (IDP) per 100,000 during 2014- 2020 Number of asylum seeker/refugee in 2021	BBS, NDRCC, RRRC
	(3)	Annual average affected population (per 10,000) by flood and cyclone during 2014-2020 Number of fully damaged houses by cyclone and flood during 2014-2020 Number of partially damaged houses by cyclone and flood during 2014-2020	NDRCC
	Food Security (2)	 Percentage of households with poor dietary diversity (Food group <=4) in 2021 Percentage of population in IPC level 4 (Food scarcity on terms of quality) in 2022 	IPC-FAO and FPMU
	Other Vulnerable Group (7)	Percentage of child labour (children age 5. 17) in 2019 Percentage of women (age 15.49 years) (percentage) domestic volence by make partner in 2017 Percentage of women headed households in 2019 Percentage of population with disability in 2020 Percentage of population (age 2.65) in 2020 Percentage of tibial population in 2020 Percentage of households living in jhupri and kutcha house in 2020	BBS
	1 Children Under 5 (2)	Under 5 children mortality rate per 1,000 in 2020 Underweight prevalence (severe) <3 SD in 2019 Stunting prevalence (severe) <3 SD in 2019 Insufficient early child development index (% of 36-59 months child) in 2019	BBS

GLOBAL QUAKE MODEL .ORG



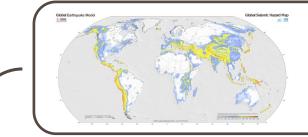
UAKE MODEL

17



LIQUEFACTION ASSESSMENT SEISMIC RISK ASSESSMENT EARTHQUAKE SCENARIOS SEISMIC RISK PROFILES

Probabilistic seismic liquefaction assessment

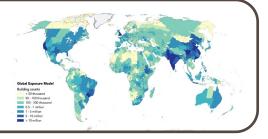

GLOBAL QUAKE MODEL

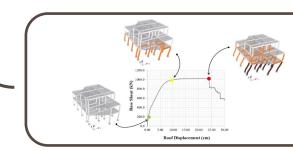
GLOBAL

OUAKE

Probabilistic seismic risk assessment

Hazard

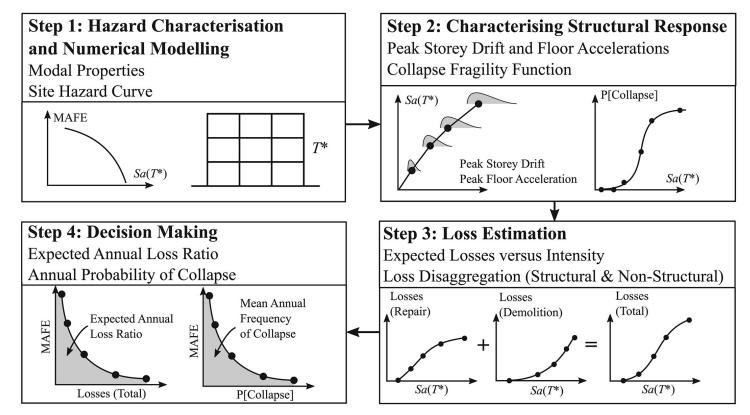

Characterizing the potential locations, intensity or magnitude, frequency or probability of earthquakes


Seismic Risk

The risk occurs when there is a spatial and temporal overlap of these three elements

Exposure

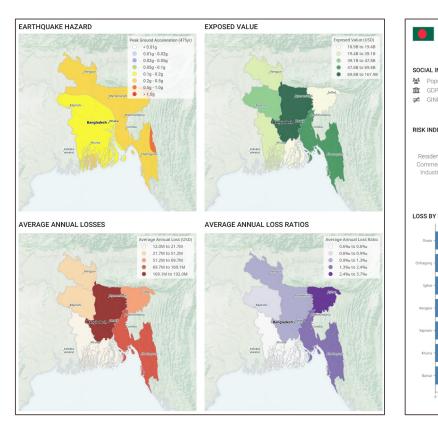
Characterizing the built environment and people in hazard-prone areas



Vulnerability

Factors which increase the susceptibility of an individual or assets to the impacts of hazards GLOBAL EARTHOUAKE MODEL

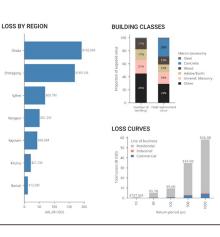
Performance based earthquake engineering framework


O'Reilly, G. J., & Calvi, G. M. (2019). Conceptual seismic design in performance-based earthquake engineering. Earthquake Engineering and Structural Dynamics, 48(4), 389–411. https://doi.org/10.1002/eqe.3141

GLOBAL QUAKE MODEL

GEM

Seismic risk profiles at the upazila level


BANGLADESH

SOCIAL INDICATORS Popu

101	Population 164.7M	~7	Population Growth 1.05%/year
盦	GDP 250.0B USD		GDP per Capita 1,517 USD
≠	GINI Index 32.1	~	Human Development Index 0.800

RISK INDICATORS

	Replacement cost (Billion USD)	Avg. annual loss (Thousand USD)	Avg. annual loss ratio (‰)
Residential	358.0	516,815	1.444
Commercial	27.5	36,888	1.340
Industrial	15.9	5,522	0.348

GEM has published division-level maps of seismic hazard, exposure, and risk for Bangladesh

54

The spatial resolution will be improved to upazila level in this project

GLOBAL QUAKE MODEL

Thank you!

Please attribute to the GEM Foundation with a link to: <u>https://www.globalquakemodel.org</u>

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) <u>https://creativecommons.org/licenses/by-nc-nd/4.0/</u>

