

Earthquake Hazard & Risk Assessment of Bangladesh

TECHNICAL PANEL SESSION #4 EARTHQUAKE-INDUCED LIQUEFACTION HAZARD ASSESSMENT: SCENARIO AND PROBABILISTIC ANALYSIS

GLOBAL EARTHQUAKE MODEL FOUNDATION

31 JANUARY 2024

Why bother?

- Contemporary regulations require risk due to ground failure to be minimized
- Avoidance of large co-seismic settlements (coarse-grained) and post-seismic consolidation (fine-grained) in non-saturated soils
- Shear strength and stiffness of saturated, cohesionless soil decrease during shaking
- Substantial permanent deformations of soils
- Losses due to liquefaction contribute to 2.2% of direct economic loss (Daniell et al., 2017)
- Damage and economic loss associated to the soil deformation (e.g., 1964 M9.2 Good Friday, Alaska; 1964 M7.6 Niigata, Japan)
- Indirect losses due to liquefaction occurrence
- Moderate magnitude events may lead to considerable losses

Why bother?

https://constrofacilitator.com/liquefaction-phenomenon-and-mitigation-strategies-for-soil-engineering/

The New York Times: A tsunami didn't destroy these 1,747 Homes. It was the ground itself, flowing.

https://www.geoengineer.org/events/geotechnical-earthquakeengineering-a-berkeley-virtual-short-course-series

Critical aspects of liquefaction hazard assessment

- Susceptibility, initiation and effects are considered in comprehensive evaluation
- Soil liquefaction is a spatially localised phenomenon limited to certain geological and hydrological settings
- Assessing geological units and depositional processes can assist in identifying areas prone to liquefaction
- High susceptibility to soil liquefaction is observed in:
 - Young, saturated sediments in coastal regions susceptible to liquefaction
 - Soils with uniform grain-size distribution
 - Artificial fills when placed without compaction
- Given the topography, various ground failure types are possible (e.g., crack openings in flat terrain, lateral spreading on gentle slopes)

GLOBAL QUAKE MODEL

GEM

GLOBAL

OUAKE

MODEL

Multi-tier modelling of liquefaction

×.

- Instability occurring at a local scale
- Initial attempts to link the liquefaction susceptibility to surficial geology
 - Contributing factors include sedimentation process, age of deposition, geologic history, water-table depth, grain-size distribution
- Improved and more informative hazard mapping with parameters that predict liquefaction potential of the geological unit

Multi-tier modeling of liquefaction

Empirical models relying on explanatory variables that have global coverage (e.g., precipitation, gwd, vs30, pgv, pga)

Complexity & cost

Tier 1 – geospatial modelling of liquefaction

Models combine seismic, geological, hydrological information

GEM

GLOBAI

- Use of parameters with global coverage (water-table depth, distance to the water bodies, vs30, slope) in lieu of field tests results (from SPT, CPT)
- Seismic demand is characterised via ground motion intensity measure such as pga and/or pgv
- Use magnitude-corrected shaking parameter to indirectly account for duration

Load	Density	Saturation
pga(m) pgv	Vs30 slope TRI dc	gwd dr dc CTI

Existing models: Zhu et al. (2015, 2017), Allstadt et al. (2022), Todorovic and Silva (2022)

Tier 1 – geospatial modelling of liquefaction

GLOBAL QUAKE MODEL

Global Earthquake Model

Tier 1 – geospatial modelling of liquefaction

GEM

GLOBAL

OUAKE

- Database of liquefaction surface manifestations mapped during geotechnical reconnaissance and/or using remote sensing techniques
- Associate observations with the corresponding н. input variables
- Select the optimal set of variables using the Luco and Cornell (2007) approach
- Selection of parametric or non-parametric model to fit the data and its evaluation on the unseen dataset
- Expected output: probability of liquefaction, binary output, liquefaction spatial extent

GEM

Need for nationwide earthquake (and liquefaction) assessment

GLOBAL QUAKE MODEL .ORG

High population across the country, with a particular concentration in Dhaka

Bangladesh population: 165 million (2022 census) Dhaka metropolitan area: 22.5 million (2022 census) Rapid urbanization coupled with poor quality RC construction & slums

Collapse of Rana Plaza in Savar, Dhaka led to 1,134 fatalities and around 2,500 injuries

80% of the country is a river delta – deep deposits of soft clay & silt

Potential for significant amplification of ground motions and liquefaction uake Model

Scenario liquefaction hazard assessment

GEM

GLOBAL QUAKE MODEL

Subduction plate boundaries

Scenario selection based on historical and likely potential events

 Ruptures solution from existing GEM research in region

11

- Mapped based on publications and topography (e.g., Madhupur)
- OpenQuake Engine scenario calculator

Scenario: 1885 M7.25 Bengal

- Proximity to densely populated city - Dhaka
- Active shallow crust
- Ground motion models:
 - AbrahamsonEtAl2014
 - ChiouYoungs2014
- Bradley (2012) cross correlation model

GLOBAL QUAKE MODEL

Scenario: 1885 M7.25 Bengal

SYLHET

Myanmar

150

200 km

GLOBAL QUAKE MODEL

Event-based PLHA

GLOBAL QUAKE MODEL

Event-based PLHA

- Contribution of various events to liquefaction occurrence
- Holistic representation of liquefaction hazard
 - Annual rates are computed for 100,000-year long stochastic catalogue

Concluding remarks

- Liquefaction hazard assessment has been mostly explored at the local (or urban) level, but new geospatial methodologies (Tier 1) have been proposed in the last decade
- Assistance in identifying areas with higher likelihood of occurrence where more detailed studies could be conducted
- Demonstrate potential despite their approximate nature
- Comparison of Geospatial and Geotechnical models
- Increase of data availability (e.g., NGL) could contribute to the increase of number of data-driven approaches

Thank you!

Please attribute to the GEM Foundation with a link to: <u>https://www.globalquakemodel.org</u>

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) <u>https://creativecommons.org/licenses/by-nc-nd/4.0/</u>

GLOBAL QUAKE MODEL .ORG

