Data Interchange Formats for the Global Earthquake Model (GEM)

Prepared for GEM1 ETH Zurich

By Keith Porter and Charles Scawthorn SPA Risk LLC Pasadena CA, USA

October 2010

SPA Project 10013-01-09-05

This is an external report, produced within the scope of the GEM1 project. GEM1 was a focused pilot project of the Global Earthquake Model initiative, which ran from January 1st 2009 to March 31st 2010 and was aimed at generating GEM's first products and developing GEM's initial IT infrastructure. The technical achievements of GEM1 have been summarised in a series of 10 reports; 6 internal and 4 external GEM1 reports. The internal reports are based on the achievements of the GEM1 team, the external reports are written by external experts who had been awarded a subcontract to carry out a specific task. In addition to reading this external reports, it is suggested to also read the rest of the GEM1 reports and in particular the GEM1 Executive Summary. These can be downloaded from www.globalquakemodel.org/node/747

© GEM Foundation 2010. All rights reserved

The views and interpretations in this document are those of the individual author(s) and should not be attributed to GEM Foundation. This report may be freely reproduced, provided that it is presented in its original form and that acknowledgement of the source is included. GEM Foundation does not guarantee that the information in this report is completely accurate; hence you should not solely rely on this information for any decision-making.

Citation: Porter K., Scawthorn C. (2010) Data Interchange Formats for the Global Earthquake Model (GEM), GEM Technical Report 2010-E2, GEM Foundation, Pavia, Italy.

www.globalquakemodel.org

EXECUTIVE SUMMARY

Sixteen draft data interchange formats and 7 terminology standards (collectively referred to here as DIFs) are proposed here for use in GEM1. This initial draft includes several DIFs for hazard output (to be used as input to risk analyses), exposure (i.e., values exposed to seismic risk), vulnerability, and fragility. Samples are provided of each DIF, and in each case, each parameter is explained, assigned a variable type (e.g., integer, text string, double-precision floating point, etc.) and any constraints are specified (e.g., probabilities between 0 and 1). The proposed data standards in this draft draw primarily on OpenSHA, OpenRisk, PAGER, and to a limited extent HAZUS-MH, EMS-98, and the World Housing Encyclopedia. The DIFs presented in this draft are entirely human-readable, plain-text flat files (commas-and-quotes); no attempt has been made yet to define XML formats. The emphasis in these DIFs is on simplicity and universality over storage efficiency. It is not intended that these DIFs represent a complete or exhaustive set of what GEM1 will require. Later drafts may add XML format and DIFs for other I/O needs. GEM1 participants are encouraged to contact the authors to recommend additions, modification.

DIF	Description	Site (S) or Portfolio (P)?	Deterministic (D) or probabilistic (P)?
HAZ01A	Event set: probabilistic ground motion by earthquake rupture forecast, ground-motion prediction equation, IMT, source, rupture, site	S or P	D or P
HAZ01B	Source & rupture rate and magnitude for HAZ01A	Either	Either
HAZ01C	Rupture distance for HAZ01A	Either	Either
HAZ01D	Logic tree weights for HAZ01A	Either	Either
HAZ02	Gridded hazard	Mostly S	Mostly P
HAZ03	Site intensity for MCS	Either	Р
HAZ04	Uniform seismic hazard	Mostly S	D
EXP01	Portfolio of point assets	Either	D
EXP02	Portfolio of point assets with uncertainty	Either	Р
VULN01A	MDF vs. IML	Either	D
VULN01B	COV of damage factor vs. IML for VULN01A	Either	Р
VULN02	Damage probability matrix	Either	Р
VULN03	Damage exceedance matrix	Either	Р
VULN04	HAZUS-based casualty rates	Either	D
VULN05	HAZUS-based MDF	Either	D
FRAG01	HAZUS-based fragility functions	Either	Either
	Site & portfolio damage & loss: TBD		

Table E1. Summary list of risk-related DIFs

Table E2. Summary of proposed taxonomies

Standard	Description	
GMPE01	Ground-motion prediction equations	
IMT01	Excitation types a.k.a. intensity measure types	
ERF01	Earthquake rupture forecasts	
SST01	PAGER structure type taxonomy = FEMA + EMS98 + WHE + extras	
SST02	ATC-13 facility class taxonomy	
SST03	HAZUS-MH structure type taxonomy	
LM01	Loss measures	

TABLE OF CONTENTS

1	INT	RODUCTION	8
	1.1	BACKGROUND	8
	1.2	SCOPE OF WORK	8
	1.3	ORGANIZATION OF REPORT	9
2	HAZ	ZARD	11
	2.1	PREFACE TO HAZARD DIFS	11
	2.2	HAZ01A, B, AND C: EXCITATION BY SITE AND SCENARIO EVENT	11
	2.3	HAZ01D: ENHANCEMENT TO HAZ01 TO QUANTIFY MODEL WEIGHTS	16
	2.4	HAZ02: GRIDDED HAZARD FILE LIKE FRANKEL ET AL. (2006)	17
	2.5	HAZ03: GROUND MOTION FROM SYNTHETIC CATALOG FOR SIMPLE MCS	
	2.6	HAZ04: UNIFORM SEISMIC HAZARD DATA	
3	EXI	POSURE	22
	3.1	PREFACE TO EXPOSURE DIFS	
	3.2	SST01 – SST03: THREE STRUCTURE TYPE CATEGORY SYSTEMS	
	3.3	EXP01: A PORTFOLIO OF POINT ASSETS	
	3.4	EXP02: A PORTFOLIO OF POINT ASSETS WITH MORE UNCERTAINTY	
4	VUI	UNERABILITY	
	4.1	Vuln01: MDF and COV vs. structure-independent Intensity	
	4.2	VULN02: DAMAGE PROBABILITY MATRIX (DPM)	
	4.3	VULN03: DAMAGE EXCEEDANCE MATRIX (DEM)	
	4.4	VULN04: HAZUS-BASED CASUALTY RATES	40
	4.5	VULN05: HAZUS-BASED MEAN DAMAGE FACTOR	42
5	FRA	AGILITY	46
	5.1	PREFACE TO FRAGILITY DIFS	46
	5.2	FRAG01: HAZUS-BASED FRAGILITY FUNCTION	46
6	SIT	E AND PORTFOLIO DAMAGE AND LOSS	50
7	CO	NCLUSIONS	51
8	REI	FERENCES CITED	53

INDEX OF FIGURES

Figure 1. HAZ01A event-set site intensity estimate	12
Figure 2. HAZ01B source and rupture information	12
Figure 3. HAZ01C rupture distance	12
Figure 4. Initial list of ground-motion prediction equation identifiers	14
Figure 5. Initial list of excitation types and units	15
Figure 6. Initial incomplete list of earthquake rupture forecasts	15
Figure 7. Example HAZ01A event-set site intensity (extract)	15
Figure 8. Example HAZ01B source and rupture information (extract)	16
Figure 9. Example HAZ01C rupture distance information (extract)	16
Figure 10. HAZ01D source, magnitude, and rate information	16
Figure 11. Example of HAZ01D source, magnitude, and rate information	17
Figure 12. HAZ02 gridded seismic hazard	17
Figure 13. Sample extract of HAZ02 gridded seismic hazard file	19
Figure 14. HAZ03 site intensity estimate	19
Figure 15. Example HAZ03 file	20
Figure 16. HAZ04 source, magnitude, and rate information	20
Figure 17. Example HAZ04 file of uniform seismic hazard	21
Figure 18. EXP01 portfolio	30
Figure 19. Sample EXP01 portfolio	31
Figure 20. EXP02 portfolio of point assets with more uncertainty	31
Figure 21. Sample EXP02 enhanced portfolio file	32
Figure 22. VULN01A, mean vulnerability functions	33
Figure 23. VULN01B, coefficient of variation of vulnerability functions	33

GEM

Figure 24. Sample vulnerability functions per VULN01A	34
Figure 25. Sample VULN01 vulnerability function coefficients of variation	34
Figure 26. Loss measures	35
Figure 27. VULN02 damage probability matrix layout	36
Figure 28. Sample DPM according to VULN02	37
Figure 29. VULN03 damage exceedance matrix layout	38
Figure 30. Sample damage exceedance matrix using VULN03	40
Figure 31. VULN04 HAZUS-MH indoor-casualty-rate vulnerability functions	41
Figure 32. Sample HAZUS-based indoor-casualty-rate vulnerability function per VUL	N0442
Figure 33. VULN05 HAZUS-MH property vulnerability functions	43
Figure 34. Sample VULN05 HAZUS-based vulnerability functions	45
Figure 35. FRAG01 HAZUS-MH component fragility functions	47
Figure 36. Sample FRAG01 fragility functions	49

INDEX OF TABLES

Table 1. PAGER structure types	23
Table 2. ATC-13 (1985) facility classes	24
Table 3. HAZUS-MH structure types	27
Table 4. Summary list of risk-related DIFs	52
Table 5. Summary of proposed taxonomies	52

1 INTRODUCTION

1.1 BACKGROUND

The Global Earthquake Model (GEM) will be an open-source system of authoritative analytical models, software, and data for researchers and professionals to perform earthquake hazard and risk analysis for single assets, portfolios of assets, or societal-level risk located virtually anywhere in the world. Current software and other tools (GSHAP, HAZUS, EXTREMUM, OpenSHA, OpenRisk, PAGER, EQRM, Selena, etc.,) offer many of these features, and GEM1 software will attempt to integrate them into proof-of-concept or prototype software. An issue for successful GEM1 development are data interchange standards to facilitate interaction with existing and developing hazard and risk software.

1.2 SCOPE OF WORK

To address the above issue, this report presents draft interchange formats (DIFs) that are intended to facilate interchange between GEM1 software packages. As used here, DIFs are standards for exchanging information with existing and developing software. A decision immediately presents itself: whether the DIFs should aim for efficiency and integration with software through the use of IP-accessible databases, or whether human-readable text files would be more universally accessible. During the proposal process, it was determined that the latter did not preclude the former, while defining DIFs with a relational database might raise hurdles to GEM1 contributors such as OpenSHA. The DIFs presented here therefore take the form of human-readable text files.

The development of such DIFs is a significant task, and will evolve as GEM develops, but it is necessary to develop draft standards for use with GEM1 tools and procedures for their further development. DIFs developed here will address exposure and risk-related information, i.e., standards for defining the assets exposed to risk and the results of risk calculations: assets locations, values exposed, characteristics related to seismic vulnerability, fragility, earthquake damage, and loss. To a limited extent we will collaborate with developers of hazard-related DIFs, primarily to address outputs of a seismic hazard calculation that can be used as inputs to loss calculations. Not included are intermediate hazard-related DIFs, e.g., fault locations,

seismicity information, earthquake rupture forecasts, and ground-motion prediction equations (we believe these are being addressed separately by GEM1).

Considering GEM1's need for DIFs early in its development, we will continue to survey current practices and capacity for new technology in regard to three classes of DIFs: (1) exposure information: the location, quantity, and other attributes of social and built assets exposed to seismic risk; (2) hazard information: primarily output information such as the probabilistic or deterministic shaking or other seismic effects at a single asset or a portfolio of asset (we understand however that others will be developing hazard-related DIFs); and (3) risk information: either input information such as data about the vulnerability of assets at risk, or output information such as the deterministic or probabilistic loss to a single asset or a portfolio of assets.

Findings of our survey will be assessed within a unifying DIF format, to identify those current DIFs most relevant, acceptable, and adaptable for GEM1's purposes, which we understand involve using or integrating existing hazard and risk software developed by GEM1 participants. To the extent that GEM1-required DIFs do not exist or are unsuitable, we will propose DIFs to meet GEM's needs.

The DIFs discussed here are not exhaustive, but will provide a useful foundation for data interchange for GEM1 developers and users. We focus on DIFs related to exposure, property damage, and ground-up repair cost in buildings, plus selected socioeconomic issues, e.g., human casualties and repair duration ("dollars, deaths, and downtime"). We do not address financial structure of risk such as insurance limits, deductibles, pro-rate shares, reinstatement, parametric catastrophe triggers, etc.

It should be noted that the DIFs ultimately required for GEM1 or GEM will depend on the GEM1 software architecture and vice versa. Writing DIFs is an iterative process, and only limited iteration is possible here. We will propose draft DIFs, present them for discussion at the March 2009 GEM meeting and Canberra, and will revise them following those discussions.

1.3 ORGANIZATION OF REPORT

This section has introduced the problem to be addressed and presented the scope of work. Draft DIFs with samples are then presented in the subsequent sections: Section 2 presents those related to hazard, Section 3 to exposure, Section 4 to vulnerability, Section 5 to fragility, and Section 6 to direct loss (site and portfolio property damage and loss). Conclusions and limitations are presented in Section 7. References are presented in Section 8.

2 HAZARD

2.1 PREFACE TO HAZARD DIFS

The DIFs presented in this section are in the form of flat files often based on currently used formats. "Based on" refers to the fact that in several cases new fields are proposed for these current standards to make them slightly more useful. Relational databases can make several of the DIFs use storage space far more efficiently, for example using indices that refer to a separate table, rather than repeating text strings, etc., in each record. In these initial DIFs, however, we have favored simplicity over efficiency. This initial set of DIFs is based on comma-separated-values; XML equivalents will be developed next. Some notes that are common to all flat files proposed here:

- 1. Lines are demarked with both newline and carriage return symbols.
- 2. Terms shown in square brackets are variable names whose meaning is detailed below.
- 3. Terms not shown in square brackets are to be written verbatim.
- 4. A line number is shown in many files in the 1st column, always labeled "ID." It is for reference only to that particular file, and is not an index that relates two or more files.
- 5. Text strings are delimited by commas and double-quotes (Unicode 0022).

2.2 HAZ01A, B, AND C: EXCITATION BY SITE AND SCENARIO EVENT

This DIF is based on the output of Field's OpenSHA event set calculator. These three flat files provide hazard information to input to serve deterministic or probabilistic single-site or portfolio loss estimates that require event-by-event excitation information where the site excitation is assumed to be lognormally distributed and the scenario occurrence rate information is required. One can consider as a special case any combination of single-site (as opposed to portfolio), single-scenario event (as opposed to multiple events), and deterministic excitation (as opposed to uncertain).

The DIF is referred to here as HAZ01, and the three files as HAZ01A, HAZ01B, and HAZ01C. The first file, HAZ01A, contains an intensity estimate (median, total logarithmic standard deviation, and inter-event logarithmic standard deviation) by earthquake rupture

forecast, ground-motion prediction equation, intensity measure type, source, rupture, and site. HAZ01B (Figure 2) provides magnitude and rate information by earthquake rupture forecast, source, and rupture. HAZ01C (Figure 3) provides rupture distance by source, rupture, and site. For simplicity, the flat file does not allow for tabulation of various parameter values that can vary by earthquake rupture forecast and ground-motion prediction equation. Figure 1 provides the layout of HAZ01A. Examples in the format of these three DIFs are shown in Figure 7 (HAZ01A), Figure 8 (HAZ01B), and Figure 9 (HAZ01C). Some notes:

- This DIF is modified slightly from the OpenSHA event-set calculator: the line number (ID) is added, as are the header line and fields for earthquake rupture forecast and the inter-event shaking uncertainty term LSDE. Sites are shown on separate lines and indicated with a site index, so that the file format need not change from portfolio to portfolio.
- 2. Some aspects of HAZ01 need additional definition, e.g., parameter values for earthquake rupture forecasts and ground-motion prediction equations. It is assumed these will be developed by or in collaboration with the person creating the hazard-centric DIFs.

```
[Explanatory header]
ID,ERF,GMPE,IMT,Source,Rupture,Site,Median,LSDT,LSDE
1,[ERF1],[GMPE1],[IMT1],[SRC1],[RUP1],[SITE1],[MED1],[LSDT1],[LSDE1]
2,[ERF2],[GMPE2],[IMT2],[SRC2],[RUP2],[SITE2],[MED2],[LSDT2],[LSDE2]
...
n,[ERFn],[GMPEn],[IMTn],[SRCn],[RUPn],[SITEn],[MEDn],[LSDTn],[LSDEn]
Figure 1. HAZ01A event-set site intensity estimate
```

[Explanatory header] ID,ERF,Source,Rupture,Rate,Mag,SourceName 1,[ERF1],[SRC1],[RUP1],[RATE1],[MAG1],"[SourceName1]" 2,[ERF2],[SRC2],[RUP2],[RATE2],[MAG2],"[SourceName2]" ... n,[ERFn],[SRCn],[RUPn],[RATEn],[MAGn],"[SourceNamen]" Figure 2. HAZ01B source and rupture information

```
[Explanatory header]
ID,ERF,Source,Rupture,Site,Dist
1,[ERF1],[SRC1],[RUP1],[SITE1],[DIST1],"[SourceName1]"
2,[ERF2],[SRC2],[RUP2],[SITE2],[DIST2],"[SourceName2]"
...
n,[ERFn],[SRCn],[RUPn],[SITEn],[DISTn],"[SourceNamen]"
```

Figure 3. HAZ01C rupture distance

DIST1 = source-to-site distance (km) as defined by the ground-motion prediction equation.

- GEM
- ERF1 = ID for earthquake rupture forecast used in record 1, a text string. Need not be unique. An initial list of earthquake rupture forecasts drawn from a recent OpenSHA application is shown in Figure 6. It will need to be supplemented with non-California earthquake rupture forecasts and additional XML to specify values of parameters specific to each earthquake rupture forecast.
- Explanatory header = as desired by hazard model, e.g., author, date, project name, etc. Need not be the same in each file.
- GMPE1 = ID for ground motion prediction equation used in record 1. Need not be unique. It is a text string of variable length, generally like AAAYYYY, where AAA indicates authors' initials and YYYY is the publication year. An initial list drawn from a recent OpenSHA application is shown in Figure 4.
- ID = data line number (integer, 1, 2, ...). It is for reference only to that particular file, and is not an index that relates two or more files. This field is new to most of DIFs proposed here. In practice it can be very helpful in QA to have reference line numbers.
- IMT1 = excitation type for record 1 (text string of variable length). An initial list is proposed in Figure 5. Note that instrumental measures of acceleration are assumed to be in units of gravity and geometric-mean direction, unless noted otherwise. Instrumental measures of velocity and displacement are assumed to be in units of cm/sec and cm, respectively, and geometric-mean direction, unless noted otherwise.
- LSDE1 = inter-event portion of LSDT1 (double-precision floating point). Intra-event portion is assumed = $(LSDT1^2 - LSDE1^2)^{0.5}$.
- LSDT1 = total logarithmic standard deviation of ground motion (double-precision floating point) of IMT1 at SIT1 given rupture of SRC1 on RUP1, using ATT1. Unitless.
- MAG1 = magnitude for record 1, assumed to be moment magnitude, Mw, unless noted in the header (single-precision floating point).
- MED1 = natural logarithm of median ground motion (double-precision floating point) of IMT1 at SIT1 given rupture of SRC1 on RUP1 using ATT1. Units are implicit in IMT1.
- RATE1 = mean exceedance rate of rupture (events per year; double-precision floating point).

- RUP1 = numeric rupture identifier for record 1 (integer; 1, 2, 3, ...), an index provided by the hazard model referring to a rupture segment on SRC1.
- SITE1 = numeric site identifier for record 1 (integer; 1, 2, 3, ...), an index provided by the portfolio referring to a particular location (latitude, longitude) where ground motion from this source and rupture is estimated.

SourceName1 = text name of source for record 1 (≤ 255 characters)

SRC1 = numeric source identifier for record 1 (integer; 1, 2, 3, ...), an index provided by the hazard model referring to a fault or area source in the hazard model's database.

```
CB2003 = Campbell and Bozorgnia (2003)
BJF1997 = Boore, Joyner, and Fumal (2007)
SEA1997 = Sadigh et al. (1997)
AS1997 = Abrahamson and Silva (1997)
F2000 = Field (2000)
A2000 = Abrahamson (2000)
SHK2003 = ShakeMap (2003)
USGS2002 = USGS Combined (Frankel et al. 2002)
USGS2004 = USGS Combined (2004)
CB2006 = Campbell and Bozorgnia (2006)
CB2008 = Campbell and Bozorgnia (2008)
CY2006 = Chiou and Youngs (2006)
BA2006 = Boore and Atkinson (2006)
BA2008 = Boore and Atkinson (2008)
CS2005 = Choi and Stewart (2005)
BS2003 = Baturay and Stewart (2003)
BC2004 = Bazzuro and Cornell (2004)
GEA2006 = Goulet et al. (2006)
```

Figure 4. GMPE01: initial list of ground-motion prediction equation identifiers

Figure 5. IMT01: initial list of excitation types (a.k.a. intensity mesaure types IMTs) and units

```
USGS/CGS1996 = USGS/CGS 1996 Adj. Cal ERF
USGS/CGS2002 = USGS/CGS 2002 Adj. Cal ERF
USGS2002 = NSHMP, Frankel et al. (2002)
UCERF1 = WGCEP UCERF 1.0 (2005)
UCERF2 = WGCEP UCERF 2.0 (2008)
FLOAT1 = Floating Poisson Fault ERF
POISS1 = Poisson Fault ERF
POINT = Point Source ERF
POINT = Point 2 Mult Vertical SS Fault ERF
```

Figure 6. Initial incomplete list of earthquake rupture forecasts

```
"K Porter 28 Feb 2009 example HAZ01A event set"
ID,ERF,GMPE,IMT,Source,Rupture,Site,Median,LSDT,LSDE
1,UCERF1,CB2003,SA10,1,0,1,-35.000,0.5835,0.146
2,UCERF1,CB2003,SA10,1,1,1,-35.000,0.580,0.145
3,UCERF1,CB2003,SA10,1,2,1,-35.000,0.5765,0.144
4,UCERF1,CB2003,SA10,1,3,1,-35.000,0.573,0.143
5,UCERF1,CB2003,SA10,1,4,1,-35.000,0.5695,0.142
6,UCERF1,CB2003,SA10,1,5,1,-35.000,0.566,0.141
7,UCERF1,CB2003,SA10,1,6,1,-35.000,0.5625,0.141
8,UCERF1,CB2003,SA10,1,7,1,-35.000,0.559,0.140
9,UCERF1,CB2003,SA10,1,8,1,-35.000,0.5555,0.139
10,UCERF1,CB2003,SA10,1,9,1,-35.000,0.552,0.138
11,UCERF1,CB2003,SA10,1,10,1,-35.000,0.5485,0.137
```

Figure 7. Example HAZ01A event-set site intensity (extract)

```
"K Porter 28 Feb 2009 example HAZ01B source and rupture info"
ID,ERF,Source,Rupture,Rate,Mag,SourceName
1,UCERF1,1,0,6.765541E-5,6.25,sj13
2,UCERF1,1,1,1.0442353E-4,6.3,sj13
3,UCERF1,1,2,1.3548647E-4,6.35,sj13
```

4, UCERF1, 1, 3, 1.47773E-4, 6.4, sj13 5, UCERF1, 1, 4, 2.3721055E-4, 6.45, sj13 6, UCERF1, 1, 5, 2.6143077E-4, 6.5, sj13 7, UCERF1, 1, 6, 2.7136767E-4, 6.55, sj13 8, UCERF1, 1, 7, 2.2218582E-4, 6.6, sj13 9, UCERF1, 1, 8, 2.2070653E-4, 6.65, sj13 10, UCERF1, 1, 9, 1.8323724E-4, 6.7, sj13 11, UCERF1, 1, 10, 1.3575674E-4, 6.75, sj13

Figure 8. Example HAZ01B source and rupture information (extract)

```
"K Porter 28 Feb 2009 example HAZ01C rupture distance"
ID,ERF,Source,Rupture,Site,Dist
1,UCERF1,1,0,1,232.25076
2,UCERF1,1,1,1,232.25076
3,UCERF1,1,2,1,232.25076
4,UCERF1,1,3,1,232.25076
5,UCERF1,1,4,1,232.25076
6,UCERF1,1,5,1,232.25076
7,UCERF1,1,6,1,232.25076
8,UCERF1,1,7,1,232.25076
9,UCERF1,1,8,1,232.25076
10,UCERF1,1,9,1,232.25076
11,UCERF1,1,10,1,232.25076
```

Figure 9. Example HAZ01C rupture distance information (extract)

2.3 HAZ01D: ENHANCEMENT TO HAZ01 TO QUANTIFY MODEL WEIGHTS

HAZ01 includes no information on weights that one might assign to each combination of earthquake rupture forecast and ground-motion prediction equation, often referred to as epistemic uncertainties. HAZ01D specifies these weights. Figure 10 specifies the format of HAZ01D; Figure 11 provides an example specifying equal weighting for 3 ground-motion prediction equations under a single earthquake rupture forecast.

```
[Explanatory header]
ID,ERF,GMPE,Weight
1,[ERF1],[GMPE1],[WT1]
2,[ERF2],[GMPE2],[WT2]
...
n,[ERFn],[GMPEn],[WTn]
```

Figure 10. HAZ01D source, magnitude, and rate information

ERFn and GMPEn are as defined in HAZ01A

WTn = weight assigned to the combination of earthquake rupture forecast and ground-motion prediction equation in record n (double-precision floating point, $0 \le WTn \le 1$), and weights sum (over all n) to $1,000 \pm 0,001$

```
sum (over all n) to 1.000 \pm 0.001.
```

```
"K Porter 28 Feb 2009 example HAZ01D event set weighting"
ID,ERF,GMPE,Weight
1,UCERF1,BA2003,0.3334
2,UCERF1,BJF2007,0.3333
3,UCERF1,SEA1997,0.3333
```

Figure 11. Example of HAZ01D source, magnitude, and rate information

2.4 HAZ02: GRIDDED HAZARD FILE LIKE FRANKEL ET AL. (2006)

This flat file serves deterministic or probabilistic single-site or portfolio loss estimates where inter-event correlation of shaking is not needed, such as single-site or portfolio expected annualized ground-up loss, or single-site loss exceedance curve. The DIF is borrowed largely from Frankel et al.'s (2006) U.S. National Seismic Hazard Maps, with minor modifications for consistency with other DIFs. The modifications are the addition of the 1st two header lines, the rearrangement of the column header line (currently the intensity levels and IMT appear on separate lines), the addition of the ID column, and fixing the number of columns to 20. The DIF is referred to here as HAZ02.

```
[Explanatory header]
[IMT],[ERF],[GMPE],[SOIL],[VS30]
ID,Lat,Lon,[X1],[X2],[X3],...,[X20]
1,[Lat1],[Lon1],[Y1,1],[Y1,2],[Y1,3],...,[Y1,20]
2,[Lat2],[Lon2],[Y2,1],[Y2,2],[Y2,3],...,[Y2,20]
...
n,[Latn],[Lonn],[Yn,1],[Yn,2],[Yn,3],...,[Yn,20]
```

Figure 12. HAZ02 gridded seismic hazard

Explanatory header = as desired by hazard model, e.g., author, date, project name, etc.

- ERF = ID for earthquake rupture forecast. See above for further detail.
- IMT = excitation type (for entire file). An initial list is proposed in Figure 5. See above for further detail.
- SOIL = NEHRP site soil category for hazard curves in this file, in {A, AB, B, BC, ... E}, e.g., per ICC (2006).

- Vs30 = mean shearwave velocity in the top 30 m of soil (m/sec, single-precision floating point, > 0).
- X1 = ground motion level 1 (double-precision floating point, > 0)
- X2 = ground motion level 2 (double-precision floating point, > X1)
- Xc = ground motion level c (double-precision floating point, > Xc-1, c in 2, 3, ... 20)
- Lat1 = latitude of site in record 1, decimal degrees north (double-precision floating point)
- Lon1 = longitude of site in record 1, decimal degrees east (negative west, double-precision floating point).
- Y1,1 = mean rate at which X1 is exceeded at the site in record 1, events/yr (double-precision floating point, ≥ 0), given that the site has mean shearwave velocity in the top 30 m of soil indicated by [Vs30].
- Y1,2 = mean rate at which X2 is exceeded at the site in record 1, events/yr (double-precision floating point, $0 \le Y1, 2 \le Y1, 1$)
- Yr,c = mean rate at which Xc is exceeded at the site in record r, events/yr (double-precision floating point, $0 \le Yr,c \le Yr,c-1$ for c > 1)

GEM

```
"Based on Frankel and Levendecker (2002) NSHMP gridded hazard file"
SA10, USGS2002, USGS2002, BC, 760
ID,Lat,Lon,0.2500E-02,0.3750E-02,0.5630E-02,0.8440E-02,0.1270E-01,0.1900E-
      01,0.2850E-01,0.4270E-01,0.6410E-01,0.9610E-
      01,0.1440E+00,0.2160E+00,0.3240E+00,0.4870E+00,0.7300E+00,0.1090E+01,0.
      1640E+01,0.2460E+01,0.3690E+01,0.5540E+01
1,43.00,-125.00,0.5947E-01,0.5116E-01,0.4206E-01,0.3340E-01,0.2587E-
      01,0.1983E-01,0.1507E-01,0.1145E-01,0.8718E-02,0.6625E-02,0.4948E-
      02,0.3523E-02,0.2314E-02,0.1347E-02,0.6541E-03,0.2396E-03,0.5748E-
      04,0.8609E-05,0.7618E-06,0.3859E-07
2,43.00,-124.95,0.6050E-01,0.5200E-01,0.4273E-01,0.3391E-01,0.2626E-
      01,0.2015E-01,0.1535E-01,0.1174E-01,0.9035E-02,0.6959E-02,0.5277E-
      02,0.3840E-02,0.2601E-02,0.1574E-02,0.8033E-03,0.3157E-03,0.8364E-
      04,0.1419E-04,0.1452E-05,0.8637E-07
3,43.00,-124.90,0.6152E-01,0.5285E-01,0.4340E-01,0.3443E-01,0.2666E-
      01,0.2046E-01,0.1561E-01,0.1199E-01,0.9301E-02,0.7235E-02,0.5540E-
      02,0.4080E-02,0.2826E-02,0.1774E-02,0.9525E-03,0.3978E-03,0.1127E-
      03,0.2040E-04,0.2221E-05,0.1399E-06
4,43.00,-124.85,0.6278E-01,0.5393E-01,0.4427E-01,0.3512E-01,0.2717E-
      01,0.2083E-01,0.1587E-01,0.1220E-01,0.9499E-02,0.7429E-02,0.5697E-
      02,0.4165E-02,0.2834E-02,0.1735E-02,0.9083E-03,0.3712E-03,0.1031E-
     03,0.1831E-04,0.1953E-05,0.1202E-06
5,43.00,-124.80,0.6404E-01,0.5499E-01,0.4511E-01,0.3573E-01,0.2760E-
      01,0.2111E-01,0.1607E-01,0.1237E-01,0.9659E-02,0.7576E-02,0.5799E-
      02,0.4191E-02,0.2786E-02,0.1659E-02,0.8478E-03,0.3407E-03,0.9320E-
      04,0.1628E-04,0.1702E-05,0.1023E-06
```

Figure 13. Sample extract of HAZ02 gridded seismic hazard file

2.5 HAZ03: GROUND MOTION FROM SYNTHETIC CATALOG FOR SIMPLE MCS

This DIF is intended to serve simple Monte Carlo simulation of site or portfolio risk: a sequence of one or more equiprobable synthetic catalogs of events. Each catalog is of a given duration, and includes a variable number of events, each with a date and time of occurrence, source, rupture segment, and magnitude. Fault distance and simulated ground motion at each of one or more sites is provided for each event; the DIF allows for multiple intensity measures in each synthetic event at each site. Figure 14 specifies the proposed DIF; Figure 15 contains an example extract with 2 events and 2 intensity measure types.

```
[Explanatory header]
[DURN]
ID,CAT,EVT,DATE,IMT,Source,Rupture,M,Site,IML
1,[CAT1],[EVT1],[DATE1],[IMT1],[SRC1],[RUP1],[M1],[SITE1],[DIST1],[IML
1]
2,[CAT2],[EVT2],[DATE2],[IMT2],[SRC2],[RUP2],[M2],[SITE2],[DISTN],[IML
2]
...
n,[CATn],[EVTn],[DATEn],[IMTn],[SRCn],[RUPn],[Mn],[SITEn],[DISTn],[IML
n]
```

Figure 14. HAZ03 site intensity estimate for MCS

DURN = duration of all catalogs, years (double-precision floating point > 0)

CATn = ID of catalog in record n (integer, in 1, 2, ...)

EVTn = ID of event within catalog CATn in record n (integer, in 1, 2, ...)

DATEn = date and local time of event in record n (YYYYMMDDHHMM, with all obvious constraints on date and time)

IMTn, SRCn, RUPn, Mn, SITEn, DISTn, as previously defined

IMLn = simulated ground motion intensity (measured in terms of IMT) in record n

```
"K Porter 28 Feb 2009 example extract of HAZ03 synthetic catalog"
10000
ID,CAT,EVT,DATE,IMT,Source,Rupture,M,Site,IML
1,1,1,264206180830,SA03,21,1,8.0,0.161
2,1,1,264206180830,SA10,21,1,8.0,0.008
3,1,2,531401011437,SA03,21,1,7.6,0.102
4,1,2,531401011437,SA10,21,1,7.6,0.006
```

Figure 15. Example HAZ03 file

2.6 HAZ04: UNIFORM SEISMIC HAZARD DATA

This DIF provides a format for tabulating ground motion with specified exceedance frequency for one or more locations given a single combination of excitation type (a.k.a. intensity measure type), earthquake rupture forecast, ground-motion prediction equation, and site soil classifications (parameterized here by Vs30). Figure 16 specifies the contents of HAZ04, while Figure 17 illustrates with 2 sites and 4 soil classes.

```
[Explanatory header]
[IMT],[G],[ERF],[GMPE]
ID,SITE,Lat,Lon,VS30,LAT,LON,IML
1,[SITE1],[Lat1],[Lon1],[VS30-1],[IML1]
2,[SITE2],[Lat2],[Lon2],[VS30-2],[IML2]
...
n,[SITEn],[Latn],[Lonn],[VS30-n],[IMLn]
```

- ERF = earthquake rupture forecast used (text string of variable length, limited to available earthquake rupture forecasts, beginning perhaps with the list in Figure 6)
- G = exceedance frequency of interest, events/yr (double-precision floating point, > 0)

Figure 16. HAZ04 source, magnitude, and rate information

GMPE = ground-motion prediction equation used (text string of variable length, limited to

available ground-motion prediction equations, beginning perhaps with the list in Figure 4)

- IMLn = intensity (measured in terms of the IMT) associated with the given exceedance frequency at the site in record n (double-precision floating point, > 0).
- IMT = intensity measure type (variable length text, beginning perhaps with the list in Figure 5)
- LATn = latitude of site in record n (double-precision floating point, decimal degrees N, within \pm 90.0)
- LONn = longitude of site in record n (double-precision floating point, decimal degrees E, within ± 180.0)
- Vs30 = mean shearwave velocity in the top 30 m of soil (m/sec, single-precision floating point, > 0).

```
"K Porter 28 Feb 2009 sample extract of HAZ04 USH data file"
SA02,0.0004,UCERF2,USGS2006
ID,SITE,Lat,Lon,VS30,LAT,LON,IML
1,1,34.00,-118.40,1125,1.78
2,1,34.00,-118.40,550,1.78
3,1,34.00,-118.40,275,1.78
4,1,34.00,-118.40,120,1.60
5,1,34.00,-118.35,1125,1.74
6,1,34.00,-118.35,550,1.74
7,1,34.00,-118.35,275,1.74
8,1,34.00,-118.35,120,1.57
```

Figure 17. Example HAZ04 file of uniform seismic hazard

3 EXPOSURE

3.1 PREFACE TO EXPOSURE DIFS

DIFs presented in this section are limited to point assets, i.e., facilities that for purposes of seismic risk estimation can be treated as located at a point.

3.2 SST01 – SST03: THREE STRUCTURE TYPE CATEGORY SYSTEMS

Before discussing exposure data files, it is worthwhile to begin with a draft taxonomy for structure types. Several naming systems are listed below. Table 1 lists the PAGER structure type taxonomy, which is an attempt to create an exhaustive structure type system combining the FEMA system (which, with the addition of code era, is the HAZUS-MH taxonomy), EMS-98 (EMS 1998), the World Housing Encyclopedia, and a few types not captured by any of these such as steel-reinforced concrete. Table 2 lists ATC-13 facility classes (Applied Technology Council 1985; the term facility class indicates that these categories include more than structures: contents, vehicles, etc. appear in the table). Table 3 lists the HAZUS-MH structure types, although a more-recent taxonomy (not shown here) subdivides the system into even finer units, with 7 combinations of code era and quality of construction, rather than the 4 code eras shown here. In these tables, lowrise refers to 1-3 stories above grade, midrise means 4-7 stories, and highrise means 8 or more stories above grade. In each system, each structure type is provided with a unique integer ID (1, 2, ...), a unique text abbreviation (25 characters or fewer).

Table 1. PAGER structure types

ID	Abbrev	Description
1	W	WOOD
2	W1	Woodframe, Wood Stud, with Wood, Stucco, or Brick Veneer < 5000 sf (500 m ²)
3	W2	Woodframe, Heavy Members, or Traditional Japanese Woodframe > 5000 sf (500 m ²)
4	W3	Woodframe, Prefabricated Steel Stud Panels
5	W4	Log building
6	S	STEEL
7	S1	Steel Moment Frame
8	S1L	Steel Moment Frame 1-3 Story
9	S1M	Steel Moment Frame 4-7 Story
10	S1H	Steel Moment Frame 8+ Story
11	S2	Steel Braced Frame
12	S2L	Steel Braced Frame 1-3 Story
13	S2M	Steel Braced Frame 4-7 Story
14	S2H	Steel Braced Frame 8+ Story
15	S3	Steel Light Frame
16	S4	Steel Frame with Cast-in-Place Concrete Shearwalls
17	S4L	Steel Frame with Cast-in-Place Concrete Shearwalls 1-3 Story
18	S4M	Steel Frame with Cast-in-Place Concrete Shearwalls 4-7 Story
19	S4H	Steel Frame with Cast-in-Place Concrete Shearwalls 8+ Story
20	S5	Steel Frame with Unreinforced Masonry Infill Walls
21	S5L	Steel Frame with Unreinforced Masonry Infill Walls 1-3 Story
22	S5M	Steel Frame with Unreinforced Masonry Infill Walls 4-7 Story
23	S5H	Steel Frame with Unreinforced Masonry Infill Walls 8+ Story
24	C	REINFORCED CONCRETE
25	C1	Ductile Reinforced Concrete Moment Frame
26	C1L	Ductile Reinforced Concrete Moment Frame 1-3 Story
27	C1M	Ductile Reinforced Concrete Moment Frame 4-7 Story
28	C1H	Ductile Reinforced Concrete Moment Frame 8+ Story
29	C2	Reinforced Concrete Shearwall
30	C2L	Reinforced Concrete Shearwall 1-3 Story
31	C2M	Reinforced Concrete Shearwall 4-7 Story
32	C2H	Reinforced Concrete Shearwall 8+ Story
33	C3	Nonductile Reinforced Concrete Moment Frame with Masonry Infill Walls
34	C3L	Nonductile Reinforced Concrete Moment Frame with Masonry Infill Walls 1-3 Story
35	C3M	Nonductile Reinforced Concrete Moment Frame with Masonry Infill Walls 4-7 Story
36	C3H	Nonductile Reinforced Concrete Moment Frame with Masonry Infill Walls 8+ Story
37	C4	Nonductile Reinforced Concrete Frame without Masonry Infill Walls
38	C4L	Nonductile Reinforced Concrete Frame without Masonry Infill Walls 1-3 Story
39	C4M	Nonductile Reinforced Concrete Frame without Masonry Infill Walls 4-7 Story
40	C4H	Nonductile Reinforced Concrete Frame without Masonry Infill Walls 8+ Story
41	C5	Steel Reinforced Concrete
42	C5L	Steel Reinforced Concrete 1-3 Story
43	C5M	Steel Reinforced Concrete 4-7 Story
44	C5H	Steel Reinforced Concrete 8+ Story
45	PC1	Tiltup
46	PC2	Precast Concrete Frames with Concrete Shearwalls
47	PC2L	Precast Concrete Frames with Concrete Shearwalls 1-3 Story
48	PC2M	Precast Concrete Frames with Concrete Shearwalls 4-7 Story
49	PC2H	Precast Concrete Frames with Concrete Shearwalls 8+ Story
50	RM	REINFORCED MASONRY

ID	Abbrev	Description
51	RM1	Reinforced Masonry Bearing Walls with Wood or Metal Deck Diaphragms
52	RM1L	Reinforced Masonry Bearing Walls with Wood or Metal Deck Diaphragms 1-3 Story
53	RM1M	Reinforced Masonry Bearing Walls with Wood or Metal Deck Diaphragms 4-7 Story
54	RM2	Reinforced Masonry Bearing Walls with Concrete Diaphragms
55	RM2L	Reinforced Masonry Bearing Walls with Concrete Diaphragms 1-3 Story
56	RM2M	Reinforced Masonry Bearing Walls with Concrete Diaphragms 4-7 Story
57	RM2H	Reinforced Masonry Bearing Walls with Concrete Diaphragms 8+ Story
58	MH	Mobile Home
59	Μ	MUD WALLS
60	M1	Mud Walls without Horizontal Wood Elements
61	M2	Mud Walls with Horizontal Wood Elements
62	А	ADOBE BLOCK (UNBAKED DRIED MUD BLOCK) WALLS
63	A1	Adobe Block, Mud Mortar, Wood Roof and Floors
64	A2	Adobe Block, Mud Mortar, Wood Roof and Floors, Bamboo, Straw, and Thatch Roof
65	A3	Adobe Block, Mud Mortar, Wood Roof and Floors, Cement-sand Mortar
66	A4	Adobe Block, Mud Mortar, Wood Roof and Floors, Reinforced Concrete Bond Beam, Cane and Mud Roof
67	A5	Adobe Block, Mud Mortar, Wood Roof and Floors, with Bamboo or Rope Reinforcement
68	RE	RAMMED EARTH/PNEUMATICALLY IMPACTED STABILIZED EARTH
69	RS	RUBBLE STONE (FIELD STONE) MASONRY
70	RS1	Field Stones Dry Stacked (No Mortar), Timber Floors, Timber, Earth, or Metal Roof
71	RS2	Field Stones, Mud Mortar, Timber Floors, Timber, Earth, or Metal Roof
72	RS3	Field Stones, Lime Mortar, Timber Floors, Timber, Earth, or Metal Roof
73	RS4	Field Stones, Cement Mortar, Vaulted Brick Roof and Floors
74	RS5	Field Stones, Cement Mortar, Timber Floors, Timber, Earth, or Metal Roof, Reinforced Concrete Bond Beam
75	DS	RECTANGULAR CUT STONE MASONRY BLOCK
76	DS1	Rectangular Cut Stone Masonry, Mud Mortar, Timber Roof and Floors
77	DS2	Rectangular Cut Stone Masonry, Lime Mortar, Timber Roof and Floors
78	DS3	Rectangular Cut Stone Masonry, Cement Mortar, Timber Roof and Floors
79	DS4	Rectangular Cut Stone Masonry, Lime Mortar, Concrete Roof and Floors
80	UFB	UNREINFORCED FIRED BRICK MASONRY
81	UFB1	Unreinforced Brick Masonry, Mud Mortar, no Timber Posts
82	UFB2	Unreinforced Brick Masonry, Mud Mortar, with Timber Posts
83	UFB3	Unreinforced Fired Brick Masonry, Cement Mortar, Timber Floors, Timber or Steel Beams and Columns, Tie
		Courses
84	UFB4	Unreinforced Fired Brick Masonry, Cement Mortar, Concrete Diaphragms, Timber or Steel Beams and
		Columns, Tie Courses
85	UCB	UNREINFORCED CONCRETE BLOCK MASONRY, LIME/CEMENT MORTAR
86	MS	MASSIVE STONE MASONRY IN LIME/CEMENT MORTAR
87	INF	INFORMAL CONSTRUCTION (PARTS OF SLUMS/SQUATTERS) Constructions made of wood/plastic
L		sheets/GI Sheets/light metal or composite etc., not confirming to engineering standards.
88	UNK	Unknown Category (Not specified)

Table 2. ATC-13 (1985) facility classes

ID	Abbrev	Description
101	W/F/LR	Wood Frame (Low Rise)
102	M/F/LR	Light Metal (Low Rise)
103	RC/SW-MRF/LR	Reinforced Concrete Shear Wall (with Moment-Resisting Frame) Low Rise
104	RC/SW-MRF/MR	Reinforced Concrete Shear Wall (with Moment-Resisting Frame) Medium Rise
105	RC/SW-MRF/HR	Reinforced Concrete Shear Wall (with Moment-Resisting Frame) High Rise
106	RC/SW-0/LR	Reinforced Concrete Shear Wall (without Moment-Resisting Frame) Low Rise

ID	Abbrev	Description
107	RC/SW-0/MR	Reinforced Concrete Shear Wall (without Moment-Resisting Frame) Medium Rise
108	RC/SW-0/HR	Reinforced Concrete Shear Wall (without Moment-Resisting Frame) High Rise
109	RM/SW-0/LR	Reinforced Masonry Shear Wall (without Moment-Resisting Frame) Low Rise
110	RM/SW-0/MR	Reinforced Masonry Shear Wall (without Moment-Resisting Frame) Medium Rise
111	RM/SW-0/HR	Reinforced Masonry Shear Wall (without Moment-Resisting Frame) High Rise
112	S/BR/LR	Braced Steel Frame Low Rise
113	S/BR/MR	Braced Steel Frame Medium Rise
114	S/BR/HR	Braced Steel Frame High Rise
115	S/MRF-P/LR	Moment-Resisting Steel Frame (Perimeter Frame) Low Rise
116	S/MRF-P/MR	Moment-Resisting Steel Frame (Perimeter Frame) Medium Rise
117	S/MRF-P/HR	Moment-Resisting Steel Frame (Perimeter Frame) High Rise
118	RC/DMRF-D/LR	Moment-Resisting Ductile Concrete Frame (Distributed Frame) Low Rise
119	RC/DMRF-D/MR	Moment-Resisting Ductile Concrete Frame (Distributed Frame) Medium Rise
120	RC/DMRF-D/HR	Moment-Resisting Ductile Concrete Frame (Distributed Frame) High Rise
121	TU	Tilt-up Low Rise
123	MH	Mobile Home
124	SIMPLE-BRIDGE	Conventional Bridge (<500-ft spans) Multiple Simple Spans
125	CONTBRIDGE	Conventional Bridge (<500-ft spans) Continuous or Single or Monolithic Spans
130	MAJOR-BRIDGE	Major Bridge (greater than 500-ft span)
131	PIPE-UG	Underground Pipeline
132	PIPE-AG	At-grade Pipeline
135	RC-DAM	Concrete Dam
136	EARTH-DAM	Earthfill and Rockfill Dam
138	AL-TUNNEL	Tunnel through Alluvium
139	RK-TUNNEL	Tunnel through Rock
140	CC-TUNNEL	Cut-and-cover Tunnel
141	UG-LIQUID-TANK	Underground Liquid Storage Tank
142	UG-SOLID-TANK	Underground Solid Storage Tank
143	AG-LIQUID-TANK	On-ground Liguid Storage Tank
144	AG-SOLID-TANK	On-ground Solid Storage Tank
145	EL-LIQUID-TANK	Elevated Liquid Storage Tank
146	EL-SOLID-TANK	Elevated Solid Storage Tank
147	RAILROAD	Railroad
148	HIGHWAY	Highway
149	RUNWAY	Runway
150	URM/CHIMNEY	High Industrial Masonry Chimney
151	RC/CHIMNEY	High Industrial Concrete Chimney
152	S/CHIMNEY	High Industrial Steel Chimney
153	CRANE	Crane
154	CONVEYOR	Conveyor System
155	STDELECTOWER	Conventional Electric Transmission Line Tower (less than 100 ft high)
156	MAJOR-ELECTOWER	Major Electric Transmission Line Tower (more than 100 ft high)
157	BROADCASTING-TOWER	Broadcast Tower
158	OBSERVATION-TOWER	Observation Tower
159	OFFSHORE-TOWER	Offshore Tower
161	CANAL	Canal
162	EARTH-RETSTRUCTURE	Earth Retaining Structure over 20 ft High
163	WATERFRONT-STRUCTURE	Waterfront Structure
164	RESIDENTIAL-EQUIP.	Residential Equipment
165	OFFICE-EQUIP.	Office Equipment (Furniture, Computers, etc.)
166	ELECTRICAL-EQUIP.	Electrical Equipment
168	MECHANICAL-EQUIP.	Mechanical Equipment
170	HIGH-TECH-EQUIP.	High Technology and Laboratory Equipment
172	S/MRF-D/LR	Moment-Resisting Steel Frame (Distributed Frame) Low Rise

ID	Abbrev	Description
173	S/MRF-D/MR	Moment-Resisting Steel Frame (Distributed Frame) Medium Rise
174	S/MRF-D/HR	Moment-Resisting Steel Frame (Distributed Frame) High Rise
175	URM/BRG-WALL/LR	Unreinforced Masonry Bearing Wall Low Rise
176	URM/BRG-WALL/MR	Unreinforced Masonry Bearing Wall Medium Rise
178	URM/FR/LR	Unreinforced Masonry with Load-Bearing Frame Low Rise
179	URM/FR/MR	Unreinforced Masonry with Load-Bearing Frame Medium Rise
180	URM/FR/HR	Unreinforced Masonry with Load-Bearing Frame High Rise
181	PCC/LR	Precast Concrete other than Tilt-Up Low Rise
182	PCC/MR	Precast Concrete other than Tilt-Up Medium Rise
183	PCC/HR	Precast Concrete other than Tilt-Up High Rise
184	RM/SW/LR	Reinforced Masonry Shear Wall (with Moment-Resisting Frame) Low Rise
185	RM/SW/MR	Reinforced Masonry Shear Wall (with Moment-Resisting Frame) Medium Rise
186	RM/SW/HR	Reinforced Masonry Shear Wall (with Moment-Resisting Frame) High Rise
187	RC/ND-FR-D/LR	Moment-Resisting Non-Ductile Concrete Frame (Distributed Frame) Low Rise
188	RC/ND-FR-D/MR	Moment-Resisting Non-Ductile Concrete Frame (Distributed Frame) Medium Rise
189	RC/ND-FR-D/HR	Moment-Resisting Non-Ductile Concrete Frame (Distributed Frame) High Rise
190	VEHICLES	Trains, Trucks, Airplanes, & other Vehicles
191	LS/LR	Long Span Low Rise

Table 3. HAZUS-MH structure types

ID	Abbrev	Description		
201	W1h	Wood frame < 5000 sf high code		
202	W1m	Wood frame < 5000 sf moderate code		
203	W1I	Wood frame < 5000 sf low code		
204	W1p	Wood frame < 5000 sf pre-code		
205	W2h	Wood frame ≥ 5000 sf high code		
206	W2m	Wood frame ≥ 5000 sf moderate code		
207	W2I	Wood frame ≥ 5000 sf low code		
208	W2p	Wood frame ≥ 5000 sf pre-code		
209	S1Lh	Steel moment frame lowrise high code		
210	S1Lm	Steel moment frame lowrise moderate code		
211	S1LI	Steel moment frame lowrise low code		
212	S1Lp	Steel moment frame lowrise pre-code		
213	S1Mh	Steel moment frame midrise high code		
214	S1Mm	Steel moment frame midrise moderate code		
215	S1MI	Steel moment frame midrise low code		
216	S1Mp	Steel moment frame midrise pre-code		
217	S1Hh	Steel moment frame highrise high code		
218	S1Hm	Steel moment frame highrise moderate code		
219	S1HI	Steel moment frame highrise low code		
220	S1Hp	Steel moment frame highrise pre-code		
221	S2Lh	Steel braced frame lowrise high code		
222	S2Lm	Steel braced frame lowrise moderate code		
223	S2LI	Steel braced frame lowrise low code		
224	S2Lp	Steel braced frame lowrise pre-code		
225	S2Mh	Steel braced frame midrise high code		
226	S2Mm	Steel braced frame midrise moderate code		
227	S2MI	Steel braced frame midrise low code		
228	S2Mp	Steel braced frame midrise pre-code		
229	S2Hh	Steel braced frame highrise high code		
230	S2Hm	Steel braced frame highrise moderate code		
231	S2HI	Steel braced frame highrise low code		
232	S2Hp	Steel braced frame highrise pre-code		
233	S3h	Steel light frame high code		
234	S3m	Steel light frame moderate code		
235	S3I	Steel light frame low code		
236	S3p	Steel light frame pre-code		
237	S4Lh	Steel frame with cast-in-place shearwalls lowrise high code		
238	S4Lm	Steel frame with cast-in-place shearwalls lowrise moderate code		
239	S4LI	Steel frame with cast-in-place shearwalls lowrise low code		
240	S4Lp	Steel frame with cast-in-place shearwalls lowrise pre-code		
241	S4Mh	Steel frame with cast-in-place shearwalls midrise high code		
242	S4Mm	Steel frame with cast-in-place shearwalls midrise moderate code		
243	S4MI	Steel frame with cast-in-place shearwalls midrise low code		
244	S4Mp	Steel frame with cast-in-place shearwalls midrise pre-code		
245	S4Hh	Steel frame with cast-in-place shearwalls highrise high code		
246	S4Hm	Steel frame with cast-in-place shearwalls highrise moderate code		
247	S4HI	Steel frame with cast-in-place shearwalls highrise low code		
248	S4Hp	Steel frame with cast-in-place shearwalls highrise pre-code		
249	S5LI	Steel frame with unreinforced masonry infill lowrise low code		
250	S5Lp	Steel frame with unreinforced masonry infill lowrise pre-code		

ID	Abbrev	Description	
251	S5MI	Steel frame with unreinforced masonry infill midrise low code	
252	S5Mn	Steel frame with unreinforced masonry infill midrise pre-code	
253	S5HI	Steel frame with unreinforced maconry infill midrise low code	
254	S5Hn	Steel frame with unreinforced masonry infill midrise pre-code	
255	C11 h	Concrete moment frame lowrise high code	
256	C1Lm	Concrete moment frame lowrise moderate code	
257	C1LI	Concrete moment frame lowrise low code	
258	C1Ln	Concrete moment frame lowrise pre-code	
259	C1Mh	Concrete moment frame midrise high code	
260	C1Mm	Concrete moment frame midrise moderate code	
261	C1MI	Concrete moment frame midrise low code	
201	C1Mp	Concrete moment frame midrise pre-code	
202	Стир	Concrete moment frame highrise high code	
203	C1Um	Concrete moment frame highlise mederate code	
204		Concrete moment frame highrise low code	
200		Concrete moment frame highrise pro code	
200	Clip	Concrete moment name nightse pre-code	
207	C2LII	Concrete shearwall lowrise might code	
200	C2LIII		
209	C2LD		
270	C2LP	Concrete shearwall howrise pre-code	
271	CZIVITI		
212	CZIVIM	Concrete shearwall midrise how code	
2/3		Concrete shearwall midrise low code	
2/4		Concrete shearwall midrise pre-code	
275	C2Hn	Concrete shearwall highrise high code	
276	C2Hm	Concrete shearwall highrise moderate code	
2//	C2HI	Concrete shearwall highrise low code	
278	C2Hp	Concrete shearwall highrise pre-code	
279	C3LI	Concrete frame with masonry infil lowrise low code	
280	C3Lp	Concrete frame with masonry infil lowrise pre-code	
281	C3MI	Concrete frame with masonry infil midrise low code	
282	СЗМр	Concrete frame with masonry infil midrise pre-code	
283	C3HI	Concrete frame with masonry infil highrise low code	
284	СЗНр	Concrete frame with masonry infil highrise pre-code	
285	PC1h	Precast concrete tiltup high code	
286	PC1m	Precast concrete tiltup moderate code	
287	PC1I	Precast concrete tiltup low code	
288	PC1p	Precast concrete frame with cast-in-place shearwalls pre-code	
289	PC2Lh	Precast concrete frame with cast-in-place shearwalls lowrise high code	
290	PC2Lm	Precast concrete frame with cast-in-place shearwalls lowrise moderate code	
291	PC2LI	Precast concrete frame with cast-in-place shearwalls lowrise low code	
292	PC2Lp	Precast concrete frame with cast-in-place shearwalls lowrise pre-code	
293	PC2Mh	Precast concrete frame with cast-in-place shearwalls midrise high code	
294	PC2Mm	Precast concrete frame with cast-in-place shearwalls midrise moderate code	
295	PC2MI	Precast concrete frame with cast-in-place shearwalls midrise low code	
296	PC2Mp	Precast concrete frame with cast-in-place shearwalls midrise pre-code	
297	PC2Hh	Precast concrete frame with cast-in-place shearwalls highrise high code	
298	PC2Hm	Precast concrete frame with cast-in-place shearwalls highrise moderate code	
299	PC2HI	Precast concrete frame with cast-in-place shearwalls highrise low code	
300	PC2Hp	Precast concrete frame with cast-in-place shearwalls highrise pre-code	
301	RM1Lh	Reinforced masonry with flexible diaphragm lowrise high code	
302	RM1Lm	Reinforced masonry with flexible diaphragm lowrise moderate code	

ID	Abbrev	Description	
303	RM1LI	Reinforced masonry with flexible diaphragm lowrise low code	
304	RM1Lp	Reinforced masonry with flexible diaphragm lowrise pre-code	
305	RM1Mh	Reinforced masonry with flexible diaphragm midrise high code	
306	RM1Mm	Reinforced masonry with flexible diaphragm midrise moderate code	
307	RM1MI	Reinforced masonry with flexible diaphragm midrise low code	
308	RM1Mp	Reinforced masonry with flexible diaphragm midrise pre-code	
309	RM2Lh	Reinforced masonry with rigid diaphragm lowrise high code	
310	RM2Lm	Reinforced masonry with rigid diaphragm lowrise moderate code	
311	RM2LI	Reinforced masonry with rigid diaphragm lowrise low code	
312	RM2Lp	Reinforced masonry with rigid diaphragm lowrise pre-code	
313	RM2Mh	Reinforced masonry with rigid diaphragm midrise high code	
314	RM2Mm	Reinforced masonry with rigid diaphragm midrise moderate code	
315	RM2MI	Reinforced masonry with rigid diaphragm midrise low code	
316	RM2Mp	Reinforced masonry with rigid diaphragm midrise pre-code	
317	RM2Hh	Reinforced masonry with rigid diaphragm highrise high code	
318	RM2Hm	Reinforced masonry with rigid diaphragm highrise moderate code	
319	RM2HI	Reinforced masonry with rigid diaphragm highrise low code	
320	RM2Hp	Reinforced masonry with rigid diaphragm highrise pre-code	
321	URMLI	Unreinforced masonry bearing wall lowrise low code	
322	URMLp	Unreinforced masonry bearing wall lowrise pre-code	
323	URMMI	Unreinforced masonry bearing wall midrise low code	
324	URMMp	Unreinforced masonry bearing wall midrise pre-code	
325	MHh	Mobile home high code	
326	MHm	Mobile home moderate code	
327	MHI	Mobile home low code	
328	МНр	Mobile home pre-code	

3.3 EXP01: A PORTFOLIO OF POINT ASSETS

This DIF provides the means to specify seismic attributes of one or more point assets at particular locations. The point assets can be individual buildings, or the building stock of a particular type in a census block, or even higher levels of aggregation. It is based on the OpenRisk portfolio file (Porter and Scawthorn 2009), minus fields related to wind and flood risk, insurance, and value uncertainty. There are more fields than can appear on a single line of this page, so a hanging line indicates that it continues from the previous line without a carriage return or line feed.

[Explanatory header] AssetID, AssetName, SiteID, SiteName, AssetGroupID, AssetGroupName, Lat, Lon, Value, VulnModel, Soil, Vs30, ValYr [AID1], [ANM1], [SITE1], [SNM1], [GID1], [GNM1], [LAT1], [LON1], [VAL1], [VULN1], [SOIL1], [VS30-1], [VALYR1] [AID2], [ANM2], [SITS2], [SITENM2], [GID2], [GNM2], [LAT2], [LON2], [VAL2], [VULN2], [SOIL2], [VS30-2], [VALYR2] ... [AIDn], [ANMn], [SITEn], [SITENMn], [GIDn], [GNMn], [LATn], [LONn], [VALn], [VULNn], [SOILn], [VS30n], [VALYRn]

```
Figure 18. EXP01 portfolio
```

AIDn = asset identifier for the asset in record *n* (unique integer in 1, 2, ..., meaning that no two lines in the file can have the same value in this field)

ANMn = name of asset in record n (text string 255 characters or less, in double quotes).

Explanatory header = as desired by loss modeler, e.g., author, date, project name, etc.

- GIDn = ID of a group to which the asset in record *n* belongs (integer in 1, 2, ...; need not be unique)
- GNMn = label for the group to which the asset in record *n* belongs (text string 255 characters or less, in double quotes). Should be the same for all records with the same value of GID.

LATn = latitude of site in record *n*, decimal degrees north (double-precision floating point)

- LONn = longitude of site in record n, decimal degrees east (negative west, double-precision floating point).
- SITEn = a potentially non-unique identifier for the location of the asset in record *n* (integer in 1, 2, ...)
- SNMn = label for the site in record*n*such as an address (text string 255 characters or less, in double quotes)
- SOILn = NEHRP site soil category for the asset in record n per ICC (2006), (text string in {A, AB, B, BC, ... E})
- VALn = best estimate of value at risk in the asset in record *n*, monetary or number or people (double precision floating point, ≥ 0.00)
- VALYRn = year in which value of asset in record n is measured (numeric YYYY), for use in update Valn to present year.

- VS30n = mean shearwave velocity in the top 30 m of soil for asset in record *n* (m/sec, single-precision floating point, > 0).
- VULNn = name of the vulnerability model to use for the asset in record *n*, e.g., "CUREE small house as-is," (text string 255 characters or less, in double quotes, restricted to a list of available models). As used here, vulnerability model is synonymous with structure type.

```
"K Porter 28 Feb 2009 sample EXP01 portfolio"
AssetID,AssetName,SiteID,SiteName,AssetGroupID,AssetGroupName,
Lat,Lon,Value,VulnModel,Soil,Vs30,ValHi,ValLo,ValYr
1,"W1p dwellings 06088",1,"Census tract 06088",1,Dwellings,34.15,
-118.12,1.06E+08,"W1p",C,490,2007
2,"W11 dwellings 06088",1,"Census tract 06088",1,Dwellings,34.15,
-118.12,8.92E+08,"W11",C,490,2007
3,"W1m dwellings 06088",1,"Census tract 06088",1,Dwellings,34.15,
-118.12,0,W1m,C,490,2007
4,"W1h dwellings 06088",1,"Census tract 06088",1,Dwellings,34.15,
-118.12,0,W1m,C,490,2007
```

Figure 19. Sample EXP01 portfolio

3.4 EXP02: A PORTFOLIO OF POINT ASSETS WITH MORE UNCERTAINTY

DIF EXP02 is an extension of EXP01, with more-exhaustive treatment of uncertainty. Figure 20 specifies the layout of EXP02; Figure 21 provides an illustration, this time at the level of individual buildings.

```
[Explanatory header]
AssetID, AssetName, SiteID, SiteName, AssetGroupID, AssetGroupName,
Lat, Lon, SLoc, Value, VulnModel, Soil, Vs30, SVs30, ValHi, ValLo, ValYr
[AID1], [ANM1], [SITE1], [SNM1], [GID1], [GNM1], [LAT1], [LON1], [SLOC1],
[VAL1], [VULN1], [SOIL1], [VS301], [SVS30-1], [VALH11], [VALL01],
[VALYR1]
[AID2], [ANM2], [SITE2], [SNM2], [GID2], [GNM2], [LAT2], [LON2], [SLOC2],
[VAL2], [VULN2], [SOIL2], [VS30-2], [SVS30-2], [VALH12], [VALL02],
[VALYR2]
...
[AIDn], [ANMn], [SITEn], [SNMn], [GIDn], [GNMn], [LATn], [LONn], [SLOCn]
[VALn], [VULNn], [SOILn], [VS30n], [SVS30-n], [VALH1n], [VALL0n],
[VALYRn]
```

Figure 20. EXP02 portfolio of point assets with more uncertainty

All terms are the same as in EXP01, plus:

SLOC1 = standard deviation of location in km (double-precision floating point, ≥ 0)

- SVS30n = standard deviation of shearwave velocity in the top 30 m of soil for asset in record *n* (m/sec, single-precision floating point, > 0).
- VALHIn = upper bound of value of asset in record *n* (double-precision floating point, \geq Valn). "Upper bound" can be interpreted by the user, but for use in 3-point moment matching (a method of uncertainty propagation), it is intended to reflect the 96th percentile of value.
- VALLOn = lower bound of value of asset in record *n* (double-precision floating point, $0 \le$ ValLon \le Valn). "Lower bound" can be interpreted by the user, but for use in 3-point moment matching (a method of uncertainty propagation), it is intended to reflect the 4th percentile of value.

```
"K Porter 28 Feb 2009 sample EXP02 enhanced portfolio"
AssetID, AssetName, SiteID, SiteName, AssetGroupID, AssetGroupName,
Lat, Lon, SLoc, Value, VulnModel, Soil, Vs30, SVs30, ValHi, ValLo, ValYr
1,"House 1",1,"769 N Michigan Ave, Pasadena CA 91104,
USA",1, Houses, 34.15,-
118.12,0.05,220000, "W1p", C, 490,250, 330000, 110000,2007
2,"Contents 1",1,"769 N Michigan Ave, Pasadena CA, 91104, USA",
USA,2, Contents, 34.15, -118.12,0.05,44000, "W1p
contents", C, 490,250,65000,15000,2007
3,"House 2",2,"2501 Bellaire St, Denver CO, 80207,
USA",1, Houses, 39.75,-
104.93,0.05,400000, URMLp, C, 420,210,500000, 360000,2007
4,"Contents 2",2,"2501 Bellaire St, Denver CO, 80207,
USA", 2, Contents, 39.75,-
104.93,0.05,400000, URMLp, C, 420,210,500000, 360000,2007
```

Figure 21. Sample EXP02 enhanced portfolio file

4 VULNERABILITY

4.1 VULN01: MDF AND COV VS. STRUCTURE-INDEPENDENT INTENSITY

A vulnerability function commonly refers to a function that gives mean loss as a fraction of value exposed (often called mean damage factor) versus a structure-independent intensity measure. A less common term, a probabilistic vulnerability function, refers to an uncertain relationship between damage factor and intensity. VULN01A alone gives the vulnerability function, while VULN01B provides a coefficient of variation to use for a probabilistic vulnerability function. If VULN01A and VULN01B are both used, then Xc, IRr, ABRr, and DESCr should match one-to-one across the two files

```
[Explanatory header]
[LM],[IMT]
ID,Abbrev,Descr,[X1],[X2], ... [Xm]
[ID1],[ABR1],"[DESC1]",[Y1,1],[Y1,2],...,[Y1,m]
[ID2],[ABR2],"[DESC1]",[Y2,1],[Y2,2],...,[Y2,m]
...
[IDn],[ABRn],"[DESCn]",[Yn,1],[Yn,2],...,[Yn,m]
```

Figure 22. VULN01A, mean vulnerability functions

[Explanatory header] ID,Abbrev,Descr,[X1],[X2], ... [Xm] [ID1],[ABR1],"[DESC1]",[V1,1],[V1,2],...,[V1,m] [ID2],[ABR2],"[DESC1]",[V2,1],[V2,2],...,[V1,m] ... [IDn],[ABRn],"[DESCn]",[Vn,1],[Vn,2],...,[Vn,m]

Figure 23. VULN01B, coefficient of variation of vulnerability functions

- ABRr = abbreviation for vulnerability model reflected in row r (text string up to 255 characters in length), should be unique with a file.
- DESCr = description of vulnerability model reflected in row r (text string up to 255 characters in length), should be unique with a file.
- Explanatory header = as desired by vulnerability modeler, e.g., author, date, project name, etc. (text string ≤ 255 characters long)

IDr = ID of vulnerability model reflected in row r (integer in 1, 2,), unique within a file.

- IMT = intensity measure type (text string of variable length). An initial list is proposed in Figure5. Note that instrumental measures of acceleration are assumed to be in units of gravity and geometric-mean direction, unless noted otherwise. Instrumental measures of velocity and
 - displacement are assumed to be in units of cm/sec and cm, respectively, and geometric-mean direction, unless noted otherwise.
- LM = loss measure reflected in these vulnerability functions, (variable length text), selected from available loss measures. An initial list of loss measures is proposed in Figure 26.
- Vr,c = coefficient of variation of loss to vulnerability model IDr given that it is exposed to excitation equal to X1 (double-precision floating point, $0 \le Vr,c$)
- X1 = ground motion level 1 (double-precision floating point, > 0)
- X2 = ground motion level 2 (double-precision floating point, > X1)
- Xc = ground motion level c (double-precision floating point, > Xc-1, c in 2, 3, ... 20)
- Yr,c = mean value of loss to asset type IDr given that it is exposed to excitation equal to Xc (double-precision floating point, $0 \le Yr,c \le Yr,c+1$)

```
"K Porter, 24 Feb 2009, sample vulnerability functions for GEM1 DIFs"
"SA02","DF"
ID,Abbrev,Descr,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0
2,CWF-102,"CUREE-Caltech small house typ
        qual",0.003,0.011,0.043,0.070,0.090,0.107,0.121,0.133,0.144,0.154
4,CWF-104,"CUREE-Caltech small house
        retr",0.000,0.000,0.002,0.020,0.037,0.053,0.068,0.082,0.094,0.106
```

Figure 24. Sample vulnerability functions per VULN01A

Figure 25. Sample VULN01 vulnerability function coefficients of variation

- DF = damage factor, meaning property repair cost as a fraction of replacement cost new; can refer to buildings or contents
- CAS1 = indoor casualty rate, HAZUS-MH severity 1, meaning fraction of indoor occupants experiencing injuries requiring basic medical aid that could be administered by paraprofessionals. These types of injuries would require bandages or observation. Some examples are: a sprain, a severe cut requiring stitches, a minor burn (first degree or second degree on a small part of the body), or a bump on the head without loss of consciousness. Does not include injuries of lesser severity that could be self treated—*no Band-aid injuries*.
- CAS2 = indoor casualty rate, HAZUS-MH severity 2, meaning fraction of indoor occupants experiencing injuries requiring a greater degree of medical care and use of medical technology such as x-rays or surgery, but not expected to progress to a life threatening status. Some examples are third degree burns or second degree burns over large parts of the body, a bump on the head that causes loss of consciousness, fractured bone, dehydration or exposure.
- CAS3 = indoor casualty rate, HAZUS-MH severity 3, meaning fraction of indoor occupants experiencing injuries that pose an immediate life threatening condition if not treated adequately and expeditiously. Some examples are: uncontrolled bleeding, punctured organ, other internal injuries, spinal column injuries, or crush syndrome.
- CAS4 = indoor fatality rate, meaning mean fraction of indoor occupants instantaneously killed or mortally injured.

TIME = loss of use duration, days

Figure 26. LM01: loss measures

4.2 VULN02: DAMAGE PROBABILITY MATRIX (DPM)

The damage probability matrix (DPM) contains a probability mass function of loss (generally damage factor) for each of several levels of intensity. Let z_i denote a particular value of the uncertain damage factor Y. (Damage factor is defined here as repair cost as a fraction of replacement cost new). The value z_i is stored in element i of a vector of size m, where $i \in \{1, 2, ..., 2n\}$

... *m*} and $0 < z_i < z_{i+1}$ for all $1 \le i < m$.

Let s_j denote a nonnegative scalar intensity measure, stored in element *j* of a vector of size *n*, where $j \in \{1, 2, ..., n\}$, constrained by $0 < s_j < s_{j+1} 0$ for all 1 < j < n. Let IMT denote the intensity measure type (e.g., PGA, PGV, etc.) of *s*.

Let Y_i denote the uncertain damage factor given the occurrence of intensity s_i .

Let *P*[] denote the probability of the condition inside the brackets.

Let p_{ij} denote the probability

$$p_{ij} = P\left[z_i \le Y_j < z_{i+1}\right] \qquad 1 \le i < m$$

$$= P\left[z_i \le Y_j\right] \qquad i = m$$
(1)

And let p_{ij} be stored in element *ij* of a rectangular matrix of size *m* x *n*, and constrained by

$$0 \le p_{ij} \le 1.0$$

 $\sum_{i=1}^{m} p_{ij} \le 1.0$
(2)

Note there is an implicit assumption that there can be a nonzero $P[Y_j < z_1]$, given by

$$P[Y_j < z_1] = 1 - \sum_{i=1}^{m} p_{ij}$$
(3)

This remaining probability is assumed hereafter to refer to the probability of (effectively) zero damage. The matrix $\{p\}$ is referred to here as the damage probability matrix (DPM). A DIF for a DPM is now proposed. Figure 27 defines the VULN02 DIF for DPMs, while Figure 28 provides a sample.

```
[Explanatory header]
[ID],[ABR],[DESC],[IMT],[LM]
LB,[X1],[X2],...[Xm]
[LB1],[Y1,1],[Y1,2],...,[Y1,m]
[LB2],[Y2,1],[Y2,2],...,[Y2,m]
...
[LBn],[Yn,1],[Yn,2],...,[Yn,m]
```

Figure 27. VULN02 damage probability matrix layout

- ABR = abbreviation for vulnerability model reflected in the file (text string up to 255 characters in length), unique within a collection of DPMs.
- DESC = description of vulnerability model reflected in the file (text string up to 255 characters in length), should be unique within a collection of DPMs.
- LB1 = lower bound of loss whose probabilities are reflected in row 1

LBr = lower bound of loss factor whose probabilities are reflected in row r

Explanatory header = as desired by vulnerability modeler, e.g., author, date, project name, etc. (text string ≤ 255 characters long)

- ID of vulnerability model reflected in the file (integer in 1, 2,), unique within a collection of DPMs.
- IMT = intensity measure type (text string of variable length). An initial list is proposed in Figure 5. Note that instrumental measures of acceleration are assumed to be in units of gravity and geometric-mean direction, unless noted otherwise. Instrumental measures of velocity and displacement are assumed to be in units of cm/sec and cm, respectively, and geometric-mean direction, unless noted otherwise.
- LM = loss measure reflected in the vulnerability model, (variable length text), selected from available loss measures. An initial list of loss measures is proposed in Figure 26.
- X1 = ground motion level 1 (double-precision floating point, > 0)
- Xc = ground motion level c (double-precision floating point, > X(c-1), c in 2, 3, ... m)
- Yr,c = probability that an asset of the type reflected in this vulnerability model will experience loss between LBr and LB(r+1), given that it is exposed to intensity Xc. For the last row, probability that it will experience loss equal to DFr (double-precision floating point; 0 ≤ Yr,c ≤ 1, sum within a column must be ≤ 1)

"K Porter, 24 Feb 2009, sample DPM for GEM1 DIFs"				
2,"CWF-102","CUREE-Caltech small house typ qual","SA02","DF"				
LB, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1				
0.001, 0.192, 0.147, 0.036, 0.004, 0.001, 0.000, 0.000, 0.000, 0.000, 0.000				
0.002, 0.098, 0.107, 0.041, 0.008, 0.002, 0.000, 0.000, 0.000, 0.000, 0.000				
0.003, 0.098, 0.144, 0.081, 0.025, 0.007, 0.002, 0.001, 0.000, 0.000, 0.000				
0.005, 0.047, 0.092, 0.072, 0.032, 0.012, 0.005, 0.002, 0.001, 0.000, 0.000				
0.007, 0.036, 0.089, 0.091, 0.053, 0.026, 0.012, 0.006, 0.003, 0.001, 0.001				
0.010, 0.039, 0.133, 0.202, 0.169, 0.115, 0.073, 0.046, 0.029, 0.018, 0.012				
0.020, 0.010, 0.051, 0.117, 0.134, 0.117, 0.094, 0.072, 0.055, 0.040, 0.030				
0.030, 0.006, 0.041, 0.127, 0.179, 0.189, 0.179, 0.160, 0.140, 0.119, 0.102				
0.050, 0.002, 0.016, 0.066, 0.109, 0.132, 0.141, 0.142, 0.137, 0.130, 0.121				
0.070, 0.001, 0.010, 0.054, 0.097, 0.128, 0.148, 0.161, 0.167, 0.170, 0.168				
0.100, 0.001, 0.009, 0.062, 0.122, 0.174, 0.219, 0.256, 0.286, 0.313, 0.332				
0.200, 0.000, 0.002, 0.018, 0.036, 0.053, 0.070, 0.086, 0.100, 0.115, 0.128				
0.300, 0.000, 0.001, 0.011, 0.021, 0.031, 0.041, 0.050, 0.060, 0.069, 0.078				
0.500, 0.000, 0.000, 0.003, 0.006, 0.008, 0.010, 0.013, 0.015, 0.017, 0.019				
0.700, 0.000, 0.000, 0.002, 0.003, 0.004, 0.004, 0.005, 0.006, 0.006, 0.007				
1.000, 0.000, 0.000, 0.001, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.003				

Figure 28. Sample DPM according to VULN02

4.3 VULN03: DAMAGE EXCEEDANCE MATRIX (DEM)

The DEM is another depiction of facility vulnerability, containing essentially the same information as the damage probability matrix. Recall that the DPM is a set of probability mass functions for loss by intensity level. The DEM instead depicts the complement of the cumulative distribution function. To be precise, the DEM is a rectangular matrix with *m* rows and *n* columns, whose columns reflect particular intensity levels and whose rows reflect particular values of loss. The entries of the DEM give the probability that the uncertain loss will exceed a particular value (the row header), when the facility is exposed to a given intensity level (the column header). Let *i* denote the row index, and let *j* denote the column index, i.e., $i \in \{1, 2, ..., m\}$ and $j \in \{1, 2, ..., n\}$. Let z_i denote the value of the damage factor for row *i*, and let s_j denote the value of intensity for column *j*. Let Y_j denote the uncertain loss given intensity s_j . Let *P* denote probability, and let q_{ij} denote the entry of the DEM in row *i*, column *j*, i.e., the probability

$$q_{ij} = P\left[Y_j \ge z_i\right] \tag{4}$$

stored in element ij of a rectangular matrix of size $m \ge n$, and constrained by

$$s_{j+1} > s_{j}$$

$$z_{i+1} > z_{i}$$

$$0 \le q_{ij} \le 1.0$$

$$q_{ij} \ge q_{i+1,j}$$

$$q_{ij} \le q_{i,j+1}$$
(5)

A DIF for DEMs is now proposed. The file layout is shown in Figure 29. A sample is shown in Figure 30.

```
[Explanatory header]
[ID],[ABR],[DESC],[IMT],[LM]
LB,[X1],[X2],...[Xn]
[LB1],[Y1,1],[Y1,2],...,[Y1,n]
[LB2],[Y2,1],[Y2,2],...,[Y2,n]
...
[LBn],[Yn,1],[Yn,2],...,[Yn,m]
```

Figure 29. VULN03 damage exceedance matrix layout

ABR = abbreviation for vulnerability model reflected in the file (text string up to 255 characters in length), unique within a collection of DEMs.

- DESC = description of vulnerability model reflected in the file (text string up to 255 characters in length), should be unique within a collection of DEMs.
- LB1 = lower bound of loss whose probabilities are reflected in row 1
- LBr = lower bound of loss factor whose probabilities are reflected in row r
- Explanatory header = as desired by vulnerability modeler, e.g., author, date, project name, etc. (text string ≤ 255 characters long)
- ID = ID of vulnerability model reflected in the file (integer in 1, 2,), unique within a collection of DEMs.
- IMT = intensity measure type (text string of variable length). An initial list is proposed in Figure 5. Note that instrumental measures of acceleration are assumed to be in units of gravity and geometric-mean direction, unless noted otherwise. Instrumental measures of velocity and displacement are assumed to be in units of cm/sec and cm, respectively, and geometric-mean direction, unless noted otherwise.
- LM = loss measure reflected in the vulnerability model (variable length text), selected from available loss measures. An initial list of loss measures is proposed in Figure 26.
- X1 = ground motion level 1 (double-precision floating point, X1 > 0)
- Xc = ground motion level c (double-precision floating point, Xc > X(c-1), c in 2, 3, ... m)
- Yr,c = probability that an asset of the type reflected in this vulnerability model will experience loss of at least LBr, given that it is exposed to intensity Xc (double-precision floating point; 0 ≤ Y(r+1),c ≤ Yr,c ≤ 1)

"K Porter, 24 Feb 2009, sample DPM for GEM1 DIFs" 2,"CWF-102","CUREE-Caltech small house typ qual","SA02","DF" LB,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 0.001, 0.5306, 0.8413, 0.9837, 0.9993, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000 0.002,0.3388,0.6941,0.9474,0.9952,0.9995,0.9999,1.0000,1.0000,1.0000,1.0000 0.003,0.2408,0.5868,0.9062,0.9872,0.9979,0.9996,0.9999,1.0000,1.0000,1.0000 0.005,0.1431,0.4429,0.8255,0.9623,0.9908,0.9975,0.9993,0.9998,0.9999,1.0000 0.007,0.0958,0.3510,0.7534,0.9306,0.9786,0.9929,0.9975,0.9990,0.9996,0.9998 0.010,0.0595,0.2624,0.6624,0.8777,0.9528,0.9808,0.9917,0.9962,0.9983,0.9991 0.020,0.0201,0.1296,0.4608,0.7083,0.8379,0.9080,0.9460,0.9671,0.9803,0.9874 0.030,0.0096,0.0783,0.3442,0.5748,0.7204,0.8145,0.8742,0.9125,0.9400,0.9571 0.050,0.0034,0.0376,0.2170,0.3956,0.5310,0.6359,0.7141,0.7726,0.8207,0.8554 0.070,0.0016,0.0218,0.1507,0.2866,0.3991,0.4950,0.5725,0.6354,0.6909,0.7346 0.100,0.0007,0.0115,0.0968,0.1894,0.2713,0.3466,0.4118,0.4684,0.5214,0.5665 0.200,0.0001,0.0029,0.0346,0.0674,0.0975,0.1278,0.1560,0.1825,0.2088,0.2343 0.300,0.0000,0.0011,0.0170,0.0318,0.0448,0.0581,0.0705,0.0824,0.0941,0.1062 0.500,0.0000,0.0003,0.0062,0.0105,0.0138,0.0171,0.0200,0.0228,0.0254,0.0284 0.700,0.0000,0.0001,0.0030,0.0046,0.0056,0.0066,0.0074,0.0082,0.0088,0.0097 1.000,0.0000,0.0000,0.0013,0.0017,0.0019,0.0021,0.0022,0.0024,0.0024,0.0026

Figure 30. Sample damage exceedance matrix using VULN03

4.4 VULN04: HAZUS-BASED CASUALTY RATES

This DIF is used for reporting structure-independent seismic vulnerability functions of indoor casualty rate, created using the HAZUS-MH methodology (e.g., Porter 2009). In the HAZUS-MH methodology, casualty rate (fraction of indoor occupants injured to each of 4 casualty severity levels), depends on structure type and intensity, seismic domain (plate boundary or continental interior), magnitude, distance, and site classification. Furthermore the proper intensity measure to use can vary with intensity. More often than not one should use the 5%damped spectral acceleration response at 1-second period, but for stiffer structures and low intensities, the proper intensity measure can be 5%-damped spectral acceleration response at 0.3second period. In any event, a single seismic vulnerability function in the VULN04 DIF is spread over many adjacent records with the same abbreviation (ABR, below), seismic domain, magnitude M, distance R, and soil. Records increase in terms of spectral displacement—a hidden variable and immaterial for the seismic vulnerability function-although SA03 and SA10 generally increase with spectral displacement. Figure 31 specifies the layout of the VULN04 HAZUS-MH indoor-casualty-rate vulnerability-function table. An example is shown in Figure 32, which is an extract of an exhaustive file of HAZUS-based casualty-rate seismic vulnerability functions at http://www.risk-agora.org/dmdownloads/FatalityVFs.zip.

```
[Explanatory header]
ABR, Domain, M, R, Soil, SA03, SA10, IM, CAS1, CAS2, CAS3, CAS4
[ABR1], [DOM1], [M1], [R1], [SOIL1], [SA03-1], [SA10-1], [IM1], [Y1,1], [Y1,2], [Y1,3], [Y1,4]
[ABR2], [DOM2], [M2], [R2], [SOIL2], [SA03-2], [SA10-2], [IM2], [Y2,1], [Y2,2], [Y2,3], [Y2,4]
...
[ABRn], [DOMn], [Mn], [Rn], [SOILn], [SA03-n], [SA10-n], [IMn], [Yn,1], [Yn,2], [Yn,3], [Yn,4]
```

Figure 31. VULN04 HAZUS-MH indoor-casualty-rate vulnerability functions

- Explanatory header = as desired by vulnerability modeler, e.g., author, date, project name, etc. (text string ≤ 255 characters long)
- ABR1 = abbreviation for vulnerability model in record 1 (text string up to 25 characters in length).
- DOM1 = seismic domain for the vulnerability model in record 1 (text, either WUS for plate boundary or CEUS for continental interior)
- M1 = magnitude for the vulnerability model in record 1 (integer, in 5, 6, 7, 8)
- R1 = fault rupture distance (km) for the vulnerability model in record 1 (integer, in 10, 20, 40, 80, where 10 refers to R < 15 km, 20 refers to $15 \le R < 30$ km, 40 refers to $30 \le R < 60$ km, and 80 refers to $60 \le R$).
- SOIL1 = NEHRP site soil classification for the vulnerability model in record in (text, in A, B, C, D, or E)
- SA03-1 = soil-amplified 5%-damped spectral acceleration response at 0.3-sec period (units of g) for the vulnerability model in record 1, SA03-1 \ge 0.
- SA10-1 = soil-amplified 5%-damped spectral acceleration response at 1.0-sec period (units of g) for the vulnerability model in record 1, SA10-1 \ge 0.
- IM1 = better intensity measure to use for the vulnerability model in record 1 at this level of intensity (text, either "SA03" or "SA10")
- Y1,1 = mean fraction of indoor occupants injured to HAZUS-MH casualty level 1 given all the conditions in record 1.
- Y1,2 = mean fraction of indoor occupants injured to HAZUS-MH casualty level 2 given all the conditions in record 1.
- Y1,3 = mean fraction of indoor occupants injured to HAZUS-MH casualty level 3 given all the conditions in record 1.

- Y1,4 = mean fraction of indoor occupants injured to HAZUS-MH casualty level 2 given all the conditions in record 1.
- Yr,c = mean fraction of indoor occupants injured to HAZUS-MH casualty level c given all the conditions in record r.

"K Porter, 24 Feb 2009, sample HAZUS casualty rate functions for GEM1 DIFs" ABR, Domain, M, R, Soil, SA03, SA10, IM, CAS1, CAS2, CAS3, CAS4 W1h,WUS,7,20,D,0.01,0,SA03,1.74512E-08,4.50043E-09,2.85792E-10,4.57783E-10 W1h,WUS,7,20,D,0.02,0,SA03,1.82553E-08,4.50043E-09,2.85792E-10,4.57783E-10 W1h,WUS,7,20,D,0.02,0,SA03,2.12805E-08,4.50043E-09,2.85792E-10,4.57783E-10 W1h,WUS,7,20,D,0.03,0.02,SA03,3.11433E-08,4.50043E-09,2.85792E-10,4.57783E-10 W1h, WUS, 7, 20, D, 0.03, 0.02, SA03, 6.32042E-08, 4.50043E-09, 2.85792E-10, 4.57783E-10 W1h, WUS, 7, 20, D, 0.04, 0.02, SA03, 1.58615E-07, 4.69077E-09, 2.85792E-10, 4.57783E-10 W1h, WUS, 7, 20, D, 0.05, 0.02, SA03, 4.18171E-07, 5.48278E-09, 2.85792E-10, 4.57783E-10 W1h, WUS, 7, 20, D, 0.07, 0.05, SA03, 1.03751E-06, 8.41816E-09, 2.85792E-10, 4.57783E-10 W1h,WUS,7,20,D,0.09,0.05,SA03,2.50457E-06,1.76968E-08,2.85792E-10,4.57783E-10 W1h,WUS,7,20,D,0.11,0.07,SA03,5.65315E-06,4.54808E-08,2.88229E-10,4.6022E-10 W1h,WUS,7,20,D,0.14,0.1,SA03,1.19463E-05,1.27065E-07,3.18106E-10,4.99244E-10 W1h, WUS, 7, 20, D, 0.17, 0.1, SA03, 2.36035E-05, 3.41026E-07, 1.0751E-09, 1.68535E-09 W1h, WUS, 7, 20, D, 0.22, 0.12, SA03, 4.32427E-05, 8.79486E-07, 3.43431E-09, 5.37914E-09 W1h,WUS,7,20,D,0.27,0.17,SA03,7.59915E-05,2.05722E-06,1.03701E-08,1.62343E-08 W1h, WUS, 7, 20, D, 0.35, 0.22, SA03, 0.00012746, 4.60409E-06, 2.8456E-08, 4.44913E-08 W1h,WUS,7,20,D,0.44,0.26,SA03,0.000203608,9.49449E-06,7.69781E-08,1.20387E-07 W1h,WUS,7,20,D,0.55,0.33,SA03,0.000313638,1.85437E-05,1.96966E-07,3.08222E-07 W1h,WUS,7,20,D,0.71,0.4,SA03,0.00047104,3.49756E-05,4.76877E-07,7.46929E-07 W1h,WUS,7,20,D,0.93,0.55,SA03,0.000692805,6.18734E-05,1.06121E-06,1.66168E-06 W1h, WUS, 7, 20, D, 1.18, 0.7, SA03, 0.001011966, 0.000107065, 2.30758E-06, 3.61916E-06 w1h, wus, 7, 20, D, 1.48, 0.88, SA03, 0.00145797, 0.000178158, 4.75542E-06, 7.47169E-06 W1h, WUS, 7, 20, D, 1.83, 1.1, SA03, 0.002099115, 0.000290709, 9.29393E-06, 1.46304E-05 W1h,WUS,7,20,D,2.19,1.32,SA03,0.002979198,0.000455825,1.68362E-05,2.65427E-05 W1h,WUS,7,20,D,2.62,1.57,SA03,0.004229346,0.000708555,2.97218E-05,4.69518E-05 W1h,WUS,7,20,D,3.05,1.83,SA03,0.00595336,0.001077293,4.98884E-05,7.89627E-05 W1h, WUS, 7, 20, D, 3.55, 2.13, SA03, 0.008171758, 0.001571859, 7.82774E-05, 0.000124093 W1h, WUS, 7, 20, D, 4.11, 2.46, SA03, 0.01110017, 0.002258537, 0.000119399, 0.000189613 w1h, wus, 7, 20, D, 4.63, 2.78, SA03, 0.01471855, 0.003140901, 0.000173793, 0.000276426 W1h, WUS, 7, 20, D, 5.18, 3.11, SA03, 0.01900418, 0.004221414, 0.000241773, 0.000385084 W1h,WUS,7,20,D,5.74,3.45,SA03,0.0236885,0.005427247,0.000318565,0.000507933 W1h,WUS,7,20,D,6.09,3.66,SA03,0.02887371,0.006806677,0.000407808,0.000650907 W1h,WUS,7,20,D,6.48,3.88,SA03,0.03419066,0.008250631,0.000502099,0.000802099 W1h,WUS,7,20,D,6.66,3.99,SA03,0.03937161,0.009681557,0.000596217,0.000953118 W1h,WUS,7,20,D,6.85,4.11,SA03,0.04398549,0.01097105,0.000681446,0.001089939

Figure 32. Sample HAZUS-based indoor-casualty-rate vulnerability function per VULN04

4.5 VULN05: HAZUS-BASED MEAN DAMAGE FACTOR

This DIF is used for reporting structure-independent seismic vulnerability functions of mean property damage factor, created using the HAZUS-MH methodology (e.g., Porter 2009b). In the HAZUS-MH methodology, mean damage factor (mean fraction of building and content value lost), depends on structure type and intensity, occupancy category, seismic domain (plate boundary or continental interior), magnitude, distance, and site classification. Furthermore the proper intensity measure to use can vary with intensity. More often than not one should use the 5%-damped spectral acceleration response at 1-second period, but for stiffer structures and low intensities, the proper intensity measure can be 5%-damped spectral acceleration response at 0.3second period. In any event, a single seismic vulnerability function in the VULN05 DIF is spread over many adjacent records with the same abbreviation (ABR, below), occupancy category (OCC, below), seismic domain, magnitude M, distance R, and soil. Records increase in terms of spectral displacement—a hidden variable and immaterial for the seismic vulnerability function although SA03 and SA10 generally increase with spectral displacement. Figure 33 specifies the layout of the VULN05 HAZUS-MH vulnerability-function table. An example is shown in Figure 34 which is an extract of an exhaustive file of HAZUS-based mean-damage-factor seismic vulnerability functions for residential http://www.riskoccupancies at agora.org/dmdownloads/RepairCostVFsRES.zip.

```
[Explanatory header]
ABR,OCC,Domain,M,R,Soil,SA03,SA10,IM,MDF
[ABR1],[OCC1],[DOM1],[M1],[R1],[SOIL1],[SA03-1],[SA10-1],[IM1],[Y1]
[ABR2],[OCC2],[DOM2],[M2],[R2],[SOIL2],[SA03-2],[SA10-2],[IM2],[Y2]
...
[ABRn],[OCCn],[DOMn],[Mn],[Rn],[SOILn],[SA03-n],[SA10-n],[IMn],[Yn]
```

```
Figure 33. VULN05 HAZUS-MH property vulnerability functions
```

- Explanatory header = as desired by vulnerability modeler, e.g., author, date, project name, etc. (text string ≤ 255 characters long)
- ABR1 = abbreviation for vulnerability model in record 1 (text string up to 25 characters in length).
- OCC1 = occupancy category for vulnerability model in record 1
- DOM1 = seismic domain for the vulnerability model in record 1 (text, either WUS for plate boundary or CEUS for continental interior)
- M1 = magnitude for the vulnerability model in record 1 (integer, in 5, 6, 7, 8)
- R1 = fault rupture distance (km) for the vulnerability model in record 1 (integer, in 10, 20, 40, 80, where 10 refers to R < 15 km, 20 refers to $15 \le R < 30$ km, 40 refers to $30 \le R < 60$ km, and 80 refers to $60 \le R$).
- SOIL1 = NEHRP site soil classification for the vulnerability model in record in (text, in A, B, C, D, or E)

- SA03-1 = soil-amplified 5%-damped spectral acceleration response at 0.3-sec period (units of g) for the vulnerability model in record 1, SA03-1 \ge 0.
- SA10-1 = soil-amplified 5%-damped spectral acceleration response at 1.0-sec period (units of g) for the vulnerability model in record 1, SA10-1 \ge 0.
- IM1 = better intensity measure to use for the vulnerability model in record 1 at this level of intensity (text, either "SA03" or "SA10")
- Y1 = mean fraction of property value lost given all the conditions in record 1.

Yr = mean fraction of property value lost given all the conditions in record r.

"K Porter 26 Feb 2009 sample HAZUS-MH vulnerability functions" Abbrev, Occ, Domain, M, R, Soil, SA03, SA10, IM, MDF W1h, RES1, WUS, 7, 20, D, 0.01, 0, Sa03, 0.0000 W1h, RES1, WUS, 7, 20, D, 0.02, 0, Sa03, 0.0000 W1h, RES1, WUS, 7, 20, D, 0.02, 0, Sa03, 0.0000 W1h, RES1, WUS, 7, 20, D, 0.03, 0.02, Sa03, 0.0000 W1h, RES1, WUS, 7, 20, D, 0.03, 0.02, Sa03, 0.0000 W1h, RES1, WUS, 7, 20, D, 0.04, 0.02, Sa03, 0.0000 W1h, RES1, WUS, 7, 20, D, 0.05, 0.02, Sa03, 0.0000 W1h, RES1, WUS, 7, 20, D, 0.07, 0.05, Sa03, 0.0001 W1h, RES1, WUS, 7, 20, D, 0.09, 0.05, Sa03, 0.0002 W1h, RES1, WUS, 7, 20, D, 0.11, 0.07, Sa03, 0.0004 W1h, RES1, WUS, 7, 20, D, 0.14, 0.1, Sa03, 0.0008 W1h, RES1, WUS, 7, 20, D, 0.17, 0.1, Sa03, 0.0016 W1h, RES1, WUS, 7, 20, D, 0.22, 0.12, Sa03, 0.0031 W1h, RES1, WUS, 7, 20, D, 0.27, 0.17, Sa03, 0.0055 W1h, RES1, WUS, 7, 20, D, 0.35, 0.22, Sa03, 0.0093 W1h, RES1, WUS, 7, 20, D, 0.44, 0.26, Sa03, 0.0152 W1h, RES1, WUS, 7, 20, D, 0.55, 0.33, Sa03, 0.0239 W1h, RES1, WUS, 7, 20, D, 0.71, 0.4, Sa03, 0.0364 W1h, RES1, WUS, 7, 20, D, 0.93, 0.55, Sa03, 0.0513 W1h, RES1, WUS, 7, 20, D, 1.18, 0.7, Sa03, 0.0698 W1h, RES1, WUS, 7, 20, D, 1.48, 0.88, Sa03, 0.0930 W1h, RES1, WUS, 7, 20, D, 1.83, 1.1, Sa03, 0.1222 W1h, RES1, WUS, 7, 20, D, 2.19, 1.32, Sa03, 0.1584 W1h, RES1, WUS, 7, 20, D, 2.62, 1.57, Sa03, 0.2024 W1h, RES1, WUS, 7, 20, D, 3.05, 1.83, Sa03, 0.2536 W1h, RES1, WUS, 7, 20, D, 3.55, 2.13, Sa03, 0.3121 W1h, RES1, WUS, 7, 20, D, 4.11, 2.46, Sa03, 0.3761 W1h, RES1, WUS, 7, 20, D, 4.63, 2.78, Sa03, 0.4426 W1h, RES1, WUS, 7, 20, D, 5.18, 3.11, Sa03, 0.5079 W1h, RES1, WUS, 7, 20, D, 5.74, 3.45, Sa03, 0.5702

W1h,RES1,WUS,7,20,D,6.09,3.66,Sa03,0.6252	
W1h, RES1, WUS, 7, 20, D, 6.48, 3.88, Sa03, 0.6717	
W1h,RES1,WUS,7,20,D,6.66,3.99,Sa03,0.7093	

Figure 34. Sample VULN05 HAZUS-based vulnerability functions

5 FRAGILITY

5.1 PREFACE TO FRAGILITY DIFS

Fragility is different from vulnerability. Fragility relates the probability of reaching or exceeding a predefined limit state (often referred to as a damage state) as a function of some input excitation. Vulnerability, by contrast, usually refers to loss as a function of input excitation. Probability is bounded by 0 and 1, whereas loss is generally bounded below by 0 and in some cases is for practical purposes unbounded above. In earthquakes, the excitation can be a measure of ground motion or structural response.

5.2 FRAG01: HAZUS-BASED FRAGILITY FUNCTION

This DIF is used for reporting seismic fragility functions for building-component damage states, created using the HAZUS-MH methodology (e.g., Porter 2009). In the HAZUS-MH methodology, there are 12 general fragility functions for ordinary buildings: 4 fragility functions for each of 3 general building components: the structural system (e.g., beams, columns, shearwalls, etc.), the nonstructural drift-sensitive component (e.g., interior partitions, glazing, etc.), and the nonstructural acceleration-sensitive component (e.g., contents). The four damage states are qualitatively named and defined: slight, moderate, extensive, and complete. The reader is referred to NIBS and FEMA (2003) for damage-state definitions.

The probability of any component reaching or exceeding a given damage state depends on the structure type, shaking intensity, seismic domain (plate boundary or continental interior), magnitude, distance, and site soil classification. As with the HAZUS-MH vulnerability models, the proper intensity measure to use can vary with intensity. More often than not one should use the 5%-damped spectral acceleration response at 1-second period, but for stiffer structures and low intensities, the proper intensity measure can be 5%-damped spectral acceleration response at 0.3-second period.

In any event, a single seismic fragility function in the FRAG01 DIF is spread over many adjacent records with the same abbreviation (ABR, below), seismic domain, magnitude M, distance R, and soil. Records increase in terms of spectral displacement—a hidden variable and immaterial for the seismic vulnerability function—although SA03 and SA10 generally increase

with spectral displacement. Figure 31 specifies the layout of the FRAG01 HAZUS-MH indoorcasualty-rate vulnerability-function table. An example is shown in Figure 32.

[Explanatory header] ABR, Domain, M, R, Soil, SA03, SA10, IM, P11, P12, P13, P14, P15, P21, P22, P23, P24, P31, P32, P33, P34 [ABR1], [DOM1], [M1], [R1], [SOIL1], [SA03-1], [SA10-1], [IM1], [P11-1], [P12-1], [P13-1], [P14-1], [P15-1], [P21-1], [P22-1], [P23-1], [P24-1], [P31-1], [P32-1], [P33-1], [P34-1] [ABR2], [DOM2], [M2], [R2], [SOIL2], [SA03-2], [SA10-2], [IM2], [P11-2], [P12-2], [P13-2], [P14-2], [P15-2], [P21-2], [P22-2], [P23-2], [P24-2], [P31-2], [P32-2], [P33-2], [P34-2] ... [ABRn], [DOMn], [Mn], [Rn], [SOILn], [SA03-n], [SA10-n], [IMn], [P11-n], [P12-n], [P13-n], [P14n], [P15-n], [P21-n], [P22-n], [P23-n], [P24-n], [P31-n], [P33-n], [P34-n]

Figure 35. FRAG01 HAZUS-MH component fragility functions

- Explanatory header = as desired by vulnerability modeler, e.g., author, date, project name, etc. (text string ≤ 255 characters long)
- ABRr = abbreviation for vulnerability model in record r (text string up to 25 characters in length).
- DOMr = seismic domain for the vulnerability model in record r (text, either WUS for plate boundary or CEUS for continental interior)
- Mr = magnitude for the vulnerability model in record r (integer, in 5, 6, 7, 8)
- Rr = fault rupture distance (km) for the vulnerability model in record r (integer, in 10, 20, 40, 80, where 10 refers to R < 15 km, 20 refers to $15 \le R < 30$ km, 40 refers to $30 \le R < 60$ km, and 80 refers to $60 \le R$).
- SOILr = NEHRP site soil classification for the vulnerability model in record r (text, in A, B, C, D, or E)
- SA03-r = soil-amplified 5%-damped spectral acceleration response at 0.3-sec period (units of g) for the vulnerability model in record r, SA03-1 \ge 0.
- SA10-r = soil-amplified 5%-damped spectral acceleration response at 1.0-sec period (units of g) for the vulnerability model in record r, SA10-1 \ge 0.
- IMr = better intensity measure to use for the vulnerability model in record r at this level of intensity (text, either "SA03" or "SA10")
- P11-r = probability that the structural component reaches or exceeds slight damage (doubleprecision floating point, $0 \le P11-r \le 1$) given all the conditions in record r.

- P12-r = probability that the structural component reaches or exceeds moderate damage (doubleprecision floating point, $0 \le P12$ -r $\le P11$ -r ≤ 1) given all the conditions in record r.
- P13-r = probability that the structural component reaches or exceeds extensive damage (doubleprecision floating point, $0 \le P13$ -r $\le P12$ -r ≤ 1) given all the conditions in record r.
- P14-r = probability that the structural component reaches or exceeds complete damage (doubleprecision floating point, $0 \le P14-r \le P13-r \le 1$) given all the conditions in record r.
- P15-r = fraction of building area that is in the collapsed damage state (double-precision floating point, $0 \le P15$ -r $\le P14$ -r ≤ 1) given all the conditions in record r.
- P21-r = probability that the nonstructural drift-sensitive component reaches or exceeds slight damage (double-precision floating point, $0 \le P21$ -r ≤ 1) given all the conditions in record r.
- P22-r = probability that the nonstructural drift-sensitive component reaches or exceeds moderate damage (double-precision floating point, $0 \le P22$ -r $\le P21$ -r ≤ 1) given all the conditions in record r.
- P23-r = probability that the nonstructural drift-sensitive component reaches or exceeds extensive damage (double-precision floating point, $0 \le P23-r \le P22-r \le 1$) given all the conditions in record r.
- P24-r = probability that the nonstructural drift-sensitive component reaches or exceeds complete damage (double-precision floating point, $0 \le P24-r \le P23-r \le 1$) given all the conditions in record r.
- P31-r = probability that the nonstructural acceleration-sensitive component reaches or exceeds slight damage (double-precision floating point, $0 \le P11-r \le 1$) given all the conditions in record r.
- P32-r = probability that the nonstructural acceleration-sensitive component reaches or exceeds moderate damage (double-precision floating point, $0 \le P12$ -r $\le P11$ -r ≤ 1) given all the conditions in record r.
- P33-r = probability that the nonstructural acceleration-sensitive component reaches or exceeds extensive damage (double-precision floating point, $0 \le P13-r \le P12-r \le 1$) given all the conditions in record r.

P34-r = probability that the nonstructural acceleration-sensitive component reaches or exceeds complete damage (double-precision floating point, $0 \le P14-r \le P13-r \le 1$) given all the conditions in record r.

"K Porter 24 Feb 2009 sample HAZUS-based fragility functions"
Abbrev, Domain, M, R, Soil, SA03, SA10, IM, P11, P12, P13, P14, P15, P21, P22, P23, P24, P31, P32, P33, P34
W1h, WUS, 7, 20, D, 0, 01, 0, SA03, 0, 00, 0, 00, 0, 00, 0, 00, 0, 00, 0
W1h, WUS, 7, 20, p, 0, 02, 0, SA03, 0, 00, 0, 00, 0, 00, 0, 00, 0, 00, 0
W1b, WUS, 7, 20, p, 0, 02, 0, SA03, 0, 00, 0, 00, 0, 00, 0, 00, 0, 00, 0
with wills, 7, 20, p, 0, 03, 0, 02, SA03, 0, 00, 0, 00, 0, 00, 0, 00, 0, 00, 0
$ \begin{array}{c} \text{win} (w05,7,20,5), 0.14, 0.1, 5A05, 0.02, 0.00, 0.$
Win, W05, 7, 20, D, 0, 17, 0, 17, 5A05, 0, 04, 0, 00, 0, 00, 0, 00, 0, 0, 0, 0, 0, 0,
Win, WUS, 7, 20, D, 0.22, 0.12, SAUS, 0.07, 0.00, 0.00, 0.00, 0.00, 0.09, 0.22, 0.00, 0.00, 0.13, 0.01, 0.00, 0.00
Win, W05, 7, 20, D, 0.27, 0.17, SAU3, 0.13, 0.01, 0.00, 0.00, 0.00, 0.14, 0.03, 0.00, 0.00, 0.21, 0.03, 0.00, 0.00
WIN, WUS, 7, 20, D, 0.35, 0.22, SA03, 0.19, 0.01, 0.00, 0.00, 0.00, 0.21, 0.06, 0.00, 0.00, 0.31, 0.06, 0.01, 0.00
WIR, WUS, 7, 20, D, 0.44, 0.26, SA03, 0.28, 0.03, 0.00, 0.00, 0.00, 0.29, 0.09, 0.00, 0.00, 0.43, 0.11, 0.01, 0.00
WIR, WUS, 7, 20, D, 0.55, 0.33, SA03, 0.39, 0.05, 0.00, 0.00, 0.00, 0.39, 0.14, 0.01, 0.00, 0.56, 0.19, 0.03, 0.00
W1h,WUS,7,20,D,0.71,0.4,SA03,0.50,0.09,0.00,0.00,0.00,0.50,0.21,0.02,0.00,0.67,0.29,0.06,0.00
W1h,WUS,7,20,D,0.93,0.55,SA03,0.61,0.14,0.01,0.00,0.00,0.61,0.30,0.03,0.01,0.74,0.37,0.09,0.01
W1h,WUS,7,20,D,1.18,0.7,SA03,0.72,0.21,0.02,0.00,0.00,0.71,0.39,0.06,0.01,0.79,0.44,0.12,0.01
W1h,WUS,7,20,D,1.48,0.88,SA03,0.81,0.31,0.03,0.00,0.00,0.79,0.50,0.10,0.02,0.83,0.50,0.15,0.02
W1h,WUS,7,20,D,1.83,1.1,SA03,0.87,0.41,0.05,0.01,0.00,0.86,0.60,0.15,0.04,0.86,0.55,0.18,0.03
W1h,WUS,7,20,D,2.19,1.32,SA03,0.93,0.52,0.09,0.02,0.00,0.91,0.69,0.22,0.07,0.88,0.60,0.22,0.04
W1h,WUS,7,20,D,2.62,1.57,SA03,0.96,0.63,0.14,0.03,0.00,0.95,0.78,0.30,0.11,0.90,0.64,0.26,0.05
W1h,WUS,7,20,D,3.05,1.83,SA03,0.98,0.74,0.21,0.05,0.00,0.97,0.85,0.40,0.16,0.92,0.68,0.29,0.06
W1h,WUS,7,20,D,3.55,2.13,SA03,0.99,0.82,0.29,0.08,0.00,0.98,0.90,0.50,0.23,0.93,0.72,0.33,0.07
W1h,WUS,7,20,D,4.11,2.46,SA03,1.00,0.88,0.39,0.12,0.00,0.99,0.94,0.61,0.31,0.95,0.76,0.37,0.09
W1h,WUS,7,20,D,4.63,2.78,SA03,1.00,0.93,0.50,0.17,0.01,1.00,0.97,0.70,0.41,0.95,0.79,0.41,0.11
W1h,WUS,7,20,D,5.18,3.11,SA03,1.00,0.96,0.60,0.24,0.01,1.00,0.98,0.79,0.50,0.96,0.81,0.45,0.13
W1h,WUS,7,20,D,5.74,3.45,SA03,1.00,0.98,0.71,0.32,0.01,1.00,0.99,0.85,0.60,0.97,0.83,0.48,0.14
W1h,WUS,7,20,D,6.09,3.66,SA03,1.00,0.99,0.79,0.41,0.01,1.00,1.00,0.90,0.69,0.97,0.84,0.50,0.15
Wlh,WUS,7,20,D,6.48,3.88,SA03,1.00,1.00,0.86,0.50,0.02,1.00,1.00,0.94,0.77,0.97,0.85,0.50,0.15
W1h,WUS,7,20,D,6.66,3.99,SA03,1.00,1.00,0.91,0.59,0.02,1.00,1.00,0.97,0.84,0.97,0.85,0.50,0.15
W1h, WUS, 7, 20, D, 6.85, 4.11, SA03, 1.00, 1.00, 0.95, 0.68, 0.02, 1.00, 1.00, 0.98, 0.89, 0.97, 0.85, 0.50, 0.15
W1h, WUS, 7, 20, D, 8.15, 4.89, SA10, 1.00, 1.00, 0.97, 0.76, 0.02, 1.00, 1.00, 0.99, 0.93, 0.97, 0.85, 0.50, 0.15
W1h, WUS, 7, 20, D, 9.15, 5.49, SA10, 1.00, 1.00, 0.98, 0.83, 0.02, 1.00, 1.00, 1.00, 0.96, 0.97, 0.85, 0.50, 0.15
wih, wus, 7, 20, p. 10. 38, 6. 23, sa10, 1.00, 1.00, 0.99, 0.88, 0.03, 1.00, 1.00, 1.00, 0.98, 0.97, 0.85, 0.50, 0.15
wih, wus, 7, 20, p. 11, 65, 6, 99, sai0, 1, 00, 1, 00, 1, 00, 0, 92, 0, 03, 1, 00, 1, 00, 1, 00, 0, 99, 0, 97, 0, 85, 0, 50, 0, 15
wlh, wus, 7, 20, p. 13.07, 7.84, SA10, 1.00, 1.00, 1.00, 0.95, 0.03, 1.00, 1.00, 1.00, 0.99, 0.97, 0.85, 0.50, 0.15
w1b.wus.7.20.p.14 82.8 89.Sa10.1 00.1 00.1 00.0 97.0 03.1 00.1 00.1 00.1 00.0 97.0 85.0 50.0 15
With Wils, 7, 20, D, 16, 62, 9, 97, Salo, 1, 00, 1, 00, 1, 00, 0, 98, 0, 03, 1, 00, 1, 00, 1, 00, 0, 97, 0, 85, 0, 50, 0, 15
With Wils, 7, 20, D, 18, 65, 11, 19, SA10, 1, 00, 1, 00, 0, 99, 0, 03, 1, 00, 1, 00, 1, 00, 0, 97, 0, 85, 0, 50, 0, 15
$ \begin{array}{c} \text{min}_{10} \text{mos}_{1,20} \text{p}_{2,20} \text{s}_{2,5} \text{s}_{1,5} \text{s}_{1,5} \text{s}_{1,100} \text{s}_{1,000} \text{s}$
$ \begin{array}{c} \text{min} (0.5, 7, 20, 5), 2.5, 5), 1.5, 5, 5, 1.5, 1.00, 1.00, 1.00, 1.00, 0.05, 1.00, 1.0$
$ \begin{array}{c} \text{min} (0.5, 7, 20, 10, 5.5, 17, 15.5, 55, 10, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.5, 0.5, 0.50, 0.15 \\ \text{min} (0.5, 7, 20, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.$
$ \begin{array}{c} \text{min}_{10} \text{mos}_{11}, \text{ros}_{12}, \text{ros}_{12}$
$ \begin{array}{c} \text{win} (0.5, 7, 20, 5) + 1.75, 25.00, 5A10, 1.00, 1.00, 1.00, 1.00, 0.05, 1.00, 1.00, 1.00, 1.00, 0.97, 0.85, 0.50, 0.15, 0.$
Win, wus, 7, 20, 0, 40, 65, 26, 11, SAU, 1, 00, 1, 00, 1, 00, 1, 00, 1, 00, 1, 00, 1, 00, 1, 00, 0, 97, 0, 85, 0, 50, 0, 15
WID, WUS, 7, 20, 0, 52, 57, 31, 54, SALU, 1.00, 1.00, 1.00, 1.00, 0.03, 1.00, 1.00, 1.00, 1.00, 0.97, 0.85, 0.50, 0.15

Figure 36. Sample FRAG01 fragility functions

6 SITE AND PORTFOLIO DAMAGE AND LOSS

TBD.

7 CONCLUSIONS

A number of draft data interchange formats (DIFs) and standard taxonomies of structure types, earthquake rupture forecasts, etc., are proposed here for use in GEM1, including DIFs for hazard output (to be used as input to risk analyses), exposure (i.e., values exposed to seismic risk), vulnerability, and fragility. DIFs are listed in Table 4, standards in Table 5.

Samples are provided of each DIF, and in each case, each parameter is explained, assigned a variable type (e.g., integer, text string, double-precision floating point, etc.) and any constraints are specified (e.g., probabilities between 0 and 1).

The proposed data standards in this draft draw primarily on OpenSHA, OpenRisk, PAGER, and to a limited extent HAZUS-MH, EMS-98, and the World Housing Encyclopedia. The DIFs presented in this draft are entirely human-readable, plain-text flat files (commas-and-quotes); no attempt has been made yet to define XML formats. The emphasis in these DIFs is on simplicity and universality over storage efficiency.

It is not intended that these DIFs be complete or exhaustive. Other DIFs and XML formats may be considered with the next draft. Readers are encouraged to contact the authors (e.g., <u>kporter@sparisk.com</u>) to recommend additions, modifications, and clarification.

DIF	Description	Site (S) or Portfolio (P)?	Deterministic (D) or probabilistic (P)?
HAZ01A	Event set: probabilistic ground motion by earthquake rupture forecast, ground-motion prediction equation, IMT, source, rupture, site	S or P	D or P
HAZ01B	Source & rupture rate and magnitude for HAZ01A	Either	Either
HAZ01C	Rupture distance for HAZ01A	Either	Either
HAZ01D	Logic tree weights for HAZ01A	Either	Either
HAZ02	Gridded hazard	Mostly S	Mostly P
HAZ03	Site intensity for MCS	Either	Р
HAZ04	Uniform seismic hazard	Mostly S	D
EXP01	Portfolio of point assets	Either	D
EXP02	Portfolio of point assets with uncertainty	Either	Р
VULN01A	MDF vs. IML	Either	D
VULN01B	COV of damage factor vs. IML for VULN01A	Either	Р
VULN02	Damage probability matrix	Either	Р
VULN03	Damage exceedance matrix	Either	Р
VULN04	HAZUS-based casualty rates	Either	D
VULN05	HAZUS-based MDF	Either	D
FRAG01	HAZUS-based fragility functions	Either	Either
	Site & portfolio damage & loss: TBD		

Table 4. Summary list of risk-related DIFs

Table 5. Summary of proposed taxonomies

Standard	Description
GMPE01	Ground-motion prediction equations
IMT01	Excitation types a.k.a. intensity measure types
ERF01	Earthquake rupture forecasts
SST01	PAGER structure type taxonomy = FEMA + EMS98 + WHE + extras
SST02	ATC-13 facility class taxonomy
SST03	HAZUS-MH structure type taxonomy
LM01	Loss measures

8 REFERENCES CITED

- (ATC) Applied Technology Council, 1985. *ATC-13, Earthquake Damage Evaluation Data for California,* Redwood City, CA, 492 pp.
- (EMS) European Seismic Commission Working Group—Macroseismic Scales, 1998. European Macroseismic Scale 1998 EMS-98. Luxembourg. http://www.gfzpotsdam.de/pb5/pb53/projekt/ems/eng/index_eng.html [17 Jul 2006]
- Frankel, A., C. Mueller, T. Barnhard, D. Perkins, E.V. Leyendecker, N. Dickman, S. Hanson, and M. Hopper, 1996, *National Seismic Hazard Maps, June 1996 Documentation*, Open-File Report 96-532, 110 pp., US Geological Survey, Denver, CO.
- (ICC) International Code Council, 2006. *International Building Code 2006*, ICC, Country Club Hills, IL, 679 pp.
- (NIBS and FEMA) National Institute of Building Sciences and Federal Emergency Management Agency, 2003. *Multi-hazard Loss Estimation Methodology, Earthquake Model, HAZUS*^{®MH} *Technical Manual,* Federal Emergency Management Agency, Washington, DC, 690 pp.
- Porter, K.A. and C.R. Scawthorn, 2009 (in review). Development of Open Source Seismic Risk Modeling Framework. Report to the U.S. Geological Survey Under award no 07HQAG0002. SPA Risk LLC, Denver CO, 32 pp.
- Porter, K.A., and C.R. Scawthorn, 2008. *OpenRisk: Open-Source Risk Estimation Software*. SPA Risk, Pasadena, CA, 123 pp., <u>http://www.risk-agora.org/downloads.html</u>
- Porter, K.A., 2009a (expected). Cracking an open safe: more HAZUS vulnerability functions in terms of structure-independent spectral acceleration. Scheduled for publication in *Earthquake Spectra* May 2009.
- Porter, K.A., 2009b (expected). Cracking an open safe: HAZUS vulnerability functions in terms of structure-independent spectral acceleration. Scheduled for publication in *Earthquake Spectra* May 2009.