

GEM IT Review -
Reviewer's Report

20 July 2010
Final

[web summary]

by Stephen Arnold, ed.

v 0.2 – 20 July 2010

With contributions included from:
Steve Arnold, Gentoo Foundation , Allan Hancock College

Shoaib Burq, Geoscience Australia

Jessy Cowan-Sharp, Sunlight Foundation

Stuart Gill, World Bank

Jocelyn Guilbert, Commissariat à l'Énergie Atomique

Jano van Hemert, Edinburgh University

Andreas Hocevar, OpenGeo

Chris Holmes, OpenGeo

Heiner Igel, Munich University

Linus Kamb, European-Mediterranean Seismological Centre

Phil Maechling, Southern California Earthquake Center

Joshua McKenty, NASA Nebula

Kevin Milner, Southern California Earthquake Center

Timo Multamäki, Eigenor Oy

Alessandro Spinuso, Observatories and Research Facilities for European
Seismology

Frank Warmerdam, Open Source Geospatial Foundation

Notes area

Chapter

3

Notes area

Table of contents
1 - Overview and consensus recommendations 5

The OpenGEM project has been disected into the following
pieces: ..5

Review outcome... 6
What GEM did very well: ...6
History and Context...7
Management recommendations...................................7
Testing ...8
Commit to a methodology: ..8
Prioritize Requirements: (Tighter Focus)8
Leverage Existing Projects More9
Community (FOSS and User Community)9
FOSS Development Process:.....................................10
Social Engagement and Media10
Licensing ...11
Data Schema / Database: ...11
Data Exchange Formats:..12
Front end..12
Calculation Engine / distributed computing:13
Distributed System / Standalone OpenGEM.............13
Deal with Scale..14
Rapid Prototyping..14
Web Services ...14
Single Sign On (SSO)..15
Additional resources and links to development tools 15
Acronymns...15

2 - Specific supporting topics.. 16
DataSchema - OpenGEM Database Model Ver 1.5........... 16

Overview ...16
Tools: ...16
Concerns ..16
References ...16

NoSQL Options.. 16
Quantified Userbase ... 17

Model Builders: Global Components17

GEM IT Review - Reviewer's Report

4

Notes area Model Builders: Regional Programmes17
Minimum Requirements..17

GEM use of Web2.0 and Social Media...............................17
Methodology fight: Agile Vs. Waterfall18
Static Code Analysis ...18
Outstanding Questions ..20

Chapter 1 - Overview and consensus recommendations

5

Notes area

1 - Overview and consensus
recommendations

The primary (IT) goal of GEM is to extend the scope, but not necessarily
the state-of-the-art, of risk and hazard calculation, as related to
earthquakes. In order to achieve this, we expect our IT architecture to
be:

• Open (Data, Source, Protocols, Standards, etc.)
• Pluggable (Modular, Loosely-Coupled)
• Dynamic (Fault-tolerant, Distributed, Constantly Updated)

Figure 1. GEM Project Schedule

Note that the organization of this document, including the Section and
Subsection naming convention, was more-or-less taken directly from the
wiki page structure. The sections were roughly organized by content,
with the notes section still in alphabetical order of reviewer's names
(same order as the wiki). This document also contains some hyperlinks
back to the wiki pages, which may be newer than what was current at
the time this report was drafted. That said, any updates made directly to
this report may not be reflected in the wiki.

The OpenGEM project has been disected into the
following pieces:

• Over-arching architecture
• Database Schema
• Application Layer (including DAC and SOAP-based Web

Services)
• Risk Engine (TBD)

GEM IT Review - Reviewer's Report

6

Notes area • Hazard Engine (including SHAML spec)
• Portlets
• Experimental UIs
• MapServer Stack (consumed by Portlets, currently)

Review outcome

What GEM did very well:
There is plenty in the GEM project which is good and commendable. We
have listed some specific points, where we jointly agreed on an above
average performance.

Looking for help from the outside (us) – in a formal way:

• Putting effort to get expert involvement. (Doesn’t happen in
most of the other European projects.)

• There is a will to understand the best approaches within GEM.
• The GEM secretariat has managed to find a good cross-section

of different backgrounds for the technical reviewers
• Despite having vague requirements, GEM1 has already shown

that the existing GEM team is capable of making results and not
just idle talk

• Future-looking at an unprecedented scale. (Great potential)

Openess:

• Made a lot of good decisions vis-a-vis being open. Want the
code to be FOSS. Thought about licenses. Open to criticism
and feedback.

• GEM is a learning organization and it shows. Not afraid to
question each other, try to do better the next time. (Vis-a-vis
Ben’s prototypes)

• WILLINGNESS to throw out the “built one to throw away”
• Hazard side really came together (around openSHA) with very

little IT support. (Made good use of OpenSHA external team).
• Trying to do something great, haven’t collapsed under their own

ambitions.
• Willing to expose themselves for criticism (very atypical).

Other issues:

• Funding is appropriately arranged, which is rather rare in
scientific related large projects. As project is not only getting
funds from a single source, the probability of actually getting
commonly accepted results is vastly larger. What they did
accomplish (SHAML spec, etc) is very impressive.

Chapter 1 - Overview and consensus recommendations

7

Notes area Productivity:

• Produced the global hazard map.
• Doing int’l distributed software development (which ain’t easy to

begin with).
• GC and RP organization seems well defined.

History and Context
We did not feel there was enough reference to outcome of Canberra
meeting including recommendation that we focus on users that can
verify and validate calculations done by system. In future IT reviews, we
recommend a concerted effort be made to make explicit reference to
previous reviews.

We recommend making public a roadmap with specific milestones, both
to guide internal development as well as an aid to coordination and
collaboration with external communities. Additionally, the decision tree
or review process that’s guiding prioritization of development should be
explicit and published as well.

Ideally, both of these artifacts would be presented as a comparison
against specific, existing projects and programs.

Management recommendations
Team management:

• Hire a full time IT manager with experience in FOSS
development

• Manage as a single, distributed team
• Distributed is helpful – it will encourage the use of good FOSS

practices
• Force good FOSS practices now (internally), before opening up

project
• Frequent project reviews (architecture, code, spec, test plans,

continous integration)

Unified and cohesive Team:

• Frequent intercommunication and meetings (face-to-face,
virtual)

• Consider FOSS methodologies and tools to promote distributed
team cohesion

• One set of tools
• Simplify (use the tools you set up)
• One repo, one document store
• Allow easy creation of branches and merging to allow flexibility
• It could be a good ideas to organize GEM workshops with

GEM IT Review - Reviewer's Report

8

Notes area scientists and ‘users’ to be sure that the DB and software (or
portal) are in good correlation with the needs.

Hiring:

• Consider a UI/UX designer early on
• Technical Manager (see above)
• Part-time FOSS community engagement role (also see section

on Community – FOSS and User Community). Continue to
have IT reviews (small, targeted, frequent).

Testing
We recommend that a strong emphasis be placed on testing during
subsequent development. This includes load testing (to identify potential
scalability issues), regression testing (to achieve verification of scientific
validity), and user testing (which will involve getting rapidly-developed
prototypes in the hands of real users and collecting detailed feedback.)

(and don't forget unit testing as part of the personal software process)

Establishing the Continuous Integration environment is a top-priority.
Test-driven development without CI, isn’t really test driven development.

Commit to a methodology:
• Might be agile or waterfall, choose and then stick to it.
• Use the same methodology for the entire project.
• Let the selected methodology inform the architecture.
• Follow the full set of practices. E.g:

• If agile, perform force-ranking of captured user stories.
Hold SCRUM meetings, and collect user test data at the
end of every sprint.

• If SDLC, fully decompose identified use cases to a
functional specification.

Prioritize Requirements: (Tighter Focus)
Get a clear set of prioritized requirements (user stories, gurkin, etc.)
This does not preclude rapid, iterative, or test-driven development, but it
requires very clear ranking – even if for short periods of time.

We recommend you consider the GC teams as your initial, high-priority
set of system users. As well, from a management perspective, if these
teams are developing software, they should be considered and
coordinated as if FOSS external contributors. Use FOSS project
management, team communication, peer review, etc.

Chapter 1 - Overview and consensus recommendations

9

Notes area The existing prioritization of users is weak. The concept of actors may
add confusion – Actors seemed to include both end-users, decision
makers, and funding organizations. More specifically, however, these
Actors were not referenced in later presentations.
If you are going to advance these as a development tool, consider
developing an end-to-end use case example (scenario) for each type of
actor.

Again, understanding requirements does not mean spending years
writing – short, iterative releases (in weeks or months) with real user
testing are a highly effective tool for gathering requirements. Ensure the
ICT manager has full responsibility for these use cases; she can present
them in the next review, and explain why design decisions match the
requirements of these cases.

Leverage Existing Projects More
• For difficult code, esp. where there are existing well-tested

components
• For collaboration, community building – contribute to them, don’t

just use
• I.e. GeoNode
• Go visit users and ICT experts in person
• Exploit userbases of other projects, e.g., NERIES mentioned the

users of their operational services

Community (FOSS and User Community)
• Don’t defer this
• Adopt FOSS practices internally (Fogel’s ‘Producing Open

Source Software’ is a great handbook for all the best FOSS
practices)

• Regarding community management:
• Each team member should be participating in the

community now, even if the source is not yet open:
• A very rough estimate of time might be 3-4 hours/week

for developers to engage in community activities
• Build in exception notification to promote accountability

for the code base
• GEM Blog: Blogging about the project, interesting

technical challenges, etc.
• External participation – attend meetings and meetups.

Consider a training and conference budget for each
developer to get out into the community, learn, and
simultaneously increase awareness of the project.

• Organize development sprints -

GEM IT Review - Reviewer's Report

10

Notes area • within the team, and with the broader
community.

• sprints can seed projects GEM will build on
• Contribute to other (external) FOSS projects – provide

patches, help out their docs, make examples for them,
earn commit rights

• Encourage taking ownership of tasks – by ticketing,
nominating domain experts etc.

• All decisions taken by the project should be done in
archivable manner, on mailing lists, irc, or at least
documented if decisions have to be done in person.
Even if project is not ‘open source’ for next 6 months
then archives should be opened when it gets opened.

• On the question of hiring a full or half time community manager,
may consider someone half time, but more important is for each
member of the team to have at least 4-8 hours a week where
their priority is doing the above activities.

• It could be a good idea to organize GEM workshops with
scientists and ‘users’ to be sure that the DB and software (or
portal) are in good correlation with the needs – these can be
arranged in concert with the development sprints mentioned
above.

FOSS Development Process:
• Use a style guide for writing/contributing code, writing tutorials,

using the collaborative space, etc.
• Commit to a consistent naming scheme (current naming

schemes have collisions and confusions)
• Plan for ticketing, reviewing, accepting contributions
• Don’t call it FOSS until it’s FOSS. See

http://en.wikipedia.org/wiki/Free_and_open_source_software
• Specify a date at which code will be released, community will

become open.

Social Engagement and Media
There was an early discussion of crowd sourcing, and the significance
of the GEM work. But the review did not return to this topic of hazard
and risk and how GEM can help with this during later discussion.

• If Crowdsourcing is a key requirement, it needs to be addressed
earlier in the design

• Crowd-sourced dataset generation (such as fault or
exposure databases) is a role that should be supported
in the system – build social tools based on those use

Chapter 1 - Overview and consensus recommendations

11

Notes area cases, not abstract ‘social’ ideas.
• Proper metadata and formats might be needed in order

to have these user generated datasets interoperable
and searchable.. consider the Linked Data and
persistent URIs approach for non-sensitive datasets

• Make the “Haiti Children” aspects of “why we’re doing
this” a more central part of the messaging (esp. in the
FOSS community side)

• Suggested frameworks include django
(http://www.djangoproject.com/)

• Exploit existing social networks, how many seismologists are on
LinkedIn?

• Regarding “semantic wikis”
• This was mentioned but not clear what the role is. Why

semantic over any other kind of wiki? What does this
mean?

• Efforts around ontology and semantics formalization
would be good to start as a public facing, community
effort now.

• With respect to GEM as a system, focusing on
developing ontologies and semantics might be out of
scope.

Licensing
• CC-zero for content http://creativecommons.org/choose/zero/

(PDDL is a similar option, but CC has nicer awareness)
• A statement on community norms, like

http://www.opendatacommons.org/norms/odc-by-sa/
• Add to that a statement that all data contributed to GEM will be

open for ever
• Statement on community-contributed content (will be public,

open for ever)
• LGPL is good enough, revamp if necessary (be open to

relicense if requested)
• Collect Contributor License Agreements (copyright assignment)
• Use PPK to sign authoritative, GEM-certified data assets. (In the

future, you could extend this capability to allow any user to sign
their data products, both for authenticity and data integrity).

• Design nice logo for GEM-certified data assets, trademark it and
control its use

Data Schema / Database:
• Address the concerns from the scientific community regarding

schema

GEM IT Review - Reviewer's Report

12

Notes area • Abandon a monolithic database
• May need to support distributed querying
• Decide if it’s important to optimize for the most remote, poor-

connectivity regions
• Defer lightweight/standalone clients until primary capability

exists.
• Develop tools for DB visualization in terms of quality of the

inputs and harmonization of the different tables
• Be sure that the DB embeds all the needs of users in terms of

computation or inputs for the computation
• See a first scheme of the organization concerning the DB

management (if the DB is distributed this point will became
more and more critic)

• Resolve conflicts between SDLC-style data modelling, ORM-
based modelling, and the necessary schema evolution
(additional mapping layers may not be the ideal solution)

• Consider schema-less, column-oriented, and document-oriented
alternatives to RDBMS

• To deal with Schema extension / churn
• For scale of certain data types

Data Exchange Formats:
• Various reviewer notes in Section 3 will include specific

commentary around the data exchange formats
• SHAML, QuakeML adoption, etc. need more prominent attention

as specific IT efforts
• Define the minimum requirement, keep to the minimum
• Plan out extension of SHAML to cover risk and SEI
• Be cautious regarding the level of effort involved in support of

these formats
• Several reviewers have concerns about the scalability or

suitability of an XML format to the type of data exchange being
proposed. Look for various viewpoints in Sections 2 & 3.

Front end
• Central issue: “JSR168/286-compliant frameworks (i.e. portlets)”

vs “non-JSR168/286 framworks”, see also JanoNotes and
Django recommendations

• Emphasize requirements, not implementation spec (eg.
JSR168/286)

• Not as important to choose portlet versus non-portlet; instead
requirements should dictate appropriate (and help identify
inappropriate) tools and technologies

• Doesn’t seem like the requirements for front-end are well

Chapter 1 - Overview and consensus recommendations

13

Notes area understood
• Disagreement: majority felt portlets are not the right technology,

but there were dissenters. See JanoNotes for more on JSR and
portlets.

• Make use of tools to build portlets, do not manually develop
everything, this is too expensive and too expensive to maintain
in the future

• The rapid prototyping effort (in javascript, python, or other high
productivity languages) seemed valuable to explore potential
features for implementation. In the context of JSR development,
tools such as Rapid will speed up prototyping to days rather
than weeks or months.

• Front-end capabilities should be analyzed from two directions
• bottom-up analysis: portal should expose key

functionalities of the system
• top down: UI mockups need to be done which identify

desired user-facing capabilities; those are likely to
highlight additional technical functionalities which need
to be added to the spec. e.g. user sharing of content,
ability to edit/fork models, etc.

• Understanding the front-end

Calculation Engine / distributed computing:
• Don’t buy or build a cluster, consider using free solutions first,

e.g., clusters and Grids (EGEE, D-Grid, UK-NGS, TeraGrid,
NorduGrid, TGCC-CCRT, etc.), then move on to HPC, if you
have HPC requirements (PRACE, DEISA2), and cloud vendors
(Amazon EC2 and many others).

• CUDA / GPU processing / MPI is all premature optimization,
may not fit nature of calculations

• Condor-type, embarrassingly parallel (high-throughput) solution
is appropriate, but should not tie into one ‘job submission
engine’. Keep dependency on these systems as low as possible
(See Section 3 for specific recommendations)

Distributed System / Standalone OpenGEM
• Defer addressing construction of lightweight client, standalone

system, or federated/distributed system for 2 years
• However, develop calculation engines as standalone

applications now
• Consider CLI interfaces to these components (as well as

WS/REST), many tools exist to take CLI and then wrap these
into services. Also many tools exist to web-ify CLIs, including
interfacing with cluster/HPC/Grid resources

GEM IT Review - Reviewer's Report

14

Notes area • Keep engine, front-end and datastore loosely-coupled and
independent

• Consider these as potentially distributed systems vs. simply
distributed data sources, but defer design decisions (specific
recommendations in Section 3)

• Modular design (stand alone calculators, decoupled web
applications) implicitly distributes computing resources

Deal with Scale
• GEM’s scale distinguishes it from similar efforts. Support for

scale seems to be a critical requirement
• For RDBMS, generate example data sets, populate tables and

evaluate usability. Modify design of database, or design of data
storage if system does not support the required global scale.

• Scale consideration include more than just RDBMS. Consider
thinking about future data-intensive needs

• Project management courage is required when taking decisions
as future scale is difficult to assess

Rapid Prototyping
• Adopt YAGNI: “You ain’t gonna need it”…don’t add functionality

until needed
• Release early and often, get real user feedback
• Look for and use appropriate tools for rapid prototyping

(including pencils)
• don’t set up tools for the sake of setting up tools. For example,

GEM TRAC system is installed but does not seem to be used..if
you’re not going to use it, abandon it.

Web Services
• Publicly accessible, versioned service API should be included
• Consider using REST – and use it to access services from web

applications
• Consider using Web Services Resource Frameworks (WSRF)

as the project is exposing resources
• Dogfooding (that is, using the tools that you create) is important

(ideally done by different people, and with a different
programming language. etc.)

• Make sure an external (or at least distinct) user is also
consuming the API, preferably in a second language (javascript
is ideal, since it has lots of constraints and is likely in mashups)

• Current system design may overuse web services internally

Chapter 1 - Overview and consensus recommendations

15

Notes area (only make sense internally when accessed from decoupled
web applications)

• The current granularity of the web service does not seem quite
right. It would likely be a mistake to convert to XML format
between seismic application and database, and to use only web
service interfaces to access database.

Single Sign On (SSO)
• Most felt the existing SSO model was not quite right – too tightly

coupled to portlets, did not adequately protect data sources.
• Adopt an existing standard mechanism, don’t reinvent the wheel
• (Specific recommendations in Section 3, many favor

SAML/Shibboleth)

Additional resources and links to development tools
• Software for distributed agile project management: pivotal

tracker
• Language for user stories: Gherkin
• Collaborative document editing: etherpad
• Test Driven Development TDD
• Behaviour Driven Development BDD a logical extension to TDD
• Grinder – Java Load Testing Framework
• UI Mockup Tools: GoMockingbird and Balsamiq Mockups
• O’Reilly RESTful Web Services
• Fogel’s Producing Open Source Sofware
• ReviewBoard – A tool to make code reviews fun…
• Find Bugs FindBugs is one example of a static analysis tool for

finding bugs in Java code.
• Schematron to valdate XML
• Rapid to quickly build (without traditional programming) JSP

servlets and JSR portlets for running back-end computing jobs
• RelaxNG keeps XML readable
• JING make screencasts to show users how it works and what

they can expect and share these

Acronymns
• REST Representational State Transfer Article explaining REST

in non-techy speak (slightly sexist)

GEM IT Review - Reviewer's Report

16

Notes area

2 - Specific supporting topics

DataSchema - OpenGEM Database
Model Ver 1.5

Overview
ORM mapping using Hibernate in JAVA.
ERD Deconstruction
Classic 3rd Normal Form

DB SERVER: gemsun01.ethz.ch

Tools:
• Java Topology Suite
• QuantumGIS
• PgAdmin III
• Hibernate Tools, including Hibernate Spatial

Concerns
• System-level tuning (e.g. complex sharding schemes, postgres-

specific DB tuning efforts, expensive hardware, etc) is not
necessarily portable for software that should be also run locally.

• The GEM system data may be best expressed in a combination
of SQL and NoSQL formats. Innovative approaches to data
representation may be necessary, esp. for the (potentially large
sets of) point data.

References
• LTree Module

NoSQL Options
“CouchDB”: http://couchdb.apache.org/

MongoDB

Chapter 4 - References and supporting materials

17

Notes area • Example of (crazy) people using it for GIS:
http://www.paolocorti.net/2009/12/06/using-mongodb-to-store-
geographic-data/

Cassandra

Riak

MonetDB has OpenGIS included. They are very willing to help. Jano
can provide contacts,

Is it feasible to have GEO NoSQL? Some folks say yes…

Quantified Userbase
How many users will GEM initially be supporting, and of what
types?

Model Builders: Global Components
• There are currently 5 Global Component consortia on “hazard”
• There are currently 5 Global Component consortia on “risk”
• There will likely be 1-2 Global Component consortia on “SEI”
• Each of these is estimated to represent between 40-100 users.
• (Total of 440-1200 users.)

Model Builders: Regional Programmes
• There are about 10 Regional Programmes
• Each is estimated to represent around 250 active users.
• They may require i18n, l8n, training and capacity building.
• (Total of 2500 users.)

Minimum Requirements
Due to opportunities for capacity building, etc., it is reasonable to
develop the GEM platform targetting modern browsers (e.g., HTML5
and WebSockets).

GEM use of Web2.0 and Social Media
Much of the data required for a global understanding of risk is currently

GEM IT Review - Reviewer's Report

18

Notes area unavailable.

Crowdsourcing is considered a key approach to collecting this data.
This may also include aspects of contesting or other incentive schemes
(ala DARPA’s red balloon).

Methodology fight: Agile Vs. Waterfall
This section was started by Steve (who wanted others to contribute) and
was intended to capture some thoughts about agile methods vs. the
more traditional “waterfall” model of software engineering, but focused
on the context of the GEM requirements for both “openness” and
scientific verification.

Although agile methods hold the promise of both rapid development and
a way of handling evolving/unknown requirements, a more traditional
approach to requirements engineering, including some form of
verification and validation of the software, may lend itself better to the
goals of V&V in the context of GEM. The key from my point of view will
be integrating a solid V&V effort with an appropriately “agile” project
environment.

Areas of emphasis that should always be included:

• Frequent communication among relevant project members (up,
down, and sideways).

• Use of the proper tools to understand (and document) source
code. Someone else will struggle to figure it out at some point
(and it may even be you). See the StaticCodeAnalysis page for
details.

• Don’t let anyone struggle alone; hold peer reviews, assign
mentors and/or partners, and make sure your co-workers aren’t
stuck on something or waiting for something (and don’t be afraid
to throw away painful code and re-implement it to get it right).

Static Code Analysis
You should always analyze your own code, including generating metrics
& documentation, as well as making full use of static analysis tools.
Many great free tools are available, and most provide both GUI front-
ends (e.g., an Eclipse plugin) and command-line interfaces (for backend
automation). A short list of tools will give some examples:

Chapter 4 - References and supporting materials

19

Notes area Statistics and metrics

• SLOCCount – SLOCCount is a handy tool for counting source
code and basic project estimation. Too useful not to use it.

• CCCC – CCCC generates detailed metrics and points out
potential problem areas in your code (with nice html formatting).
Another extremely useful tool…

Documentation and design extraction

• Doxygen – Doxygen is a source code documentation, analysis,
and reverse-engineering tool for several languages, and can be
extremely useful when incorporated into the software
development process (ie, by defining your coding style to
include doxygen-style comments; can also use JaveDoc style)
and incorporating your own internal docs as well.

• JavaDoc – JavaDoc comes for free with the JDK. Use it.

Software engineering and analysis

• Eclipse – Eclipse is an all-in-one software environment for
multiple languages, with plugins for pretty much everything from
analysis to visualization to test and deployment. Yes, it can get
bloated, but it’s also the best interface between human and
code ever invented.

• Plugins – There are so many plugins for Eclipse they needed
eclipseplugincentral.com…

• FindBugs – FindBugs is a tool for finding bugs in Java code. If
you write (or work with) more than 10 lines of Java, you should
really be using this tool…

• PMD – PMD is another analysis tool for Java (not at all
orthogonal to FindBugs). Also highly recommended.

Software engineering tools at tigris.org

• Subversion – Clients, plugins, docs, etc (in the process of
moving from tigris.org to apache.org).

• ArgoUML – The best free UML editing system around (supports
DoDAF notation).

Other

• Source Navigator – Source Navigator is a cross-platform
software development and code analysis tool with multi-
language and multiple toolchain support.

A short presentation on this topic is also available on SlideShare

GEM IT Review - Reviewer's Report

20

Notes area Outstanding Questions
Editor's note: Some of these seem to be answered in the individual
write-ups.

• What existing open source projects (with attendant developer
communities) could be co-opt’d / merged with GEM?

• What primary test case (with attendant full-scale data set, etc)
can be used to further develop / validate requirements during
the next 6 months of development?

• What sort of “requirements roadmap” can help guide this “agile”
process?

• Why Latitude X Longitude instead of Geocode?
• Is it feasible to achieve a unified data format (for exchange as

well as internal representations), or will the internal
representation always be more complex than exchange format?

