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ABSTRACT 

This report describes the ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009) created on the 

request and with sponsorship from the GEM Foundation. 

 The ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009) is a major step forward on the 

way to improve characterization of spatial distribution of seismicity, magnitude frequency relation and 

maximum magnitudes within the scope of GEM. 

 With a few exceptions, parameters of this catalogue are the result of computations based on the 

original reports of seismic stations and observatories. 

 We made every effort to use uniform location and magnitude determination procedures during the 

entire period of the catalogue: 

­ In earthquake location, we used a combination of the EHB depth determination technique and 

the new ISC procedures that use a multitude of primary and secondary seismic phases from the 

IASPEI Seismic Phase List and the ak135 velocity model and take into account the correlated error 

structure. 

­ In determination of earthquake magnitude, where possible, we used direct MW values from Global 

CMT project for the period 1976-2009. In addition, 1,127 high quality scientific papers have been 

processed to obtain directly measured values of M0 and MW for 970 large earthquakes during 

1900-1979. In all other instances we computed MW proxy values based on our own determination 

of instrumental surface or body wave magnitudes using updated regression models. 

­ It has to be noted that a computation of MW proxy values based on regressions from other types 

of magnitudes does not bring similarly reliable results as compared to a direct measurement of 

MW based on the original waveform analysis. It is, nevertheless, a necessary measure since the 

direct measurement of MW using historical analogue waveforms on a global scale is beyond the 

scope of this project. 

 A number of important additional benefits have been achieved during this project: 

­ The entire ISC collection of historical paper-based seismic station bulletins was reviewed, indexed 

and catalogued for further works. Indexes of similar collections at USGS/Berkeley were used in 

filling the gaps in the ISC collection.  

­ A large number of seismic phase arrival times, body and surface wave amplitude measurements 

have been made electronically available on a global scale that have never been available on a 

global scale prior to this project. 

­ A large number of more accurate network MS and mb magnitudes have been computed for large 

earthquakes that either had no magnitude estimate or the estimates were previously based on 

single or unreliable station data. 

 In our work we consulted and were observed by experts from the IASPEI and, where possible, followed 

the IASPEI seismic standards.  
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 We put together an excellent team of professionals in the field and gave training to a group of technical 

personnel without whom the work on this project would have been impossible to complete. These 

personnel members are a valuable asset of this project and their experience can be used if further 

work was to be planned. 

 Although the ISC-GEM Catalogue is a major accomplishment, we nevertheless believe that further 

work is necessary to enhance its qualities: 

­ Firstly, neglecting to update the ISC-GEM Catalogue beyond 2009 would seriously hamper the 

GEM community efforts of testing and refining of the earthquake forecasting models.  

­ Secondly, it is well known that in seismic hazard studies the effect of small to moderate size 

earthquakes is not negligible. This is especially the case in densely populated and industrialized 

areas. This calls for further improvement of completeness of the reference catalogue to be 

extensively used by GEM community for many years to come. 

­ Thirdly, it has to be noted that we really have no magnitude estimates for many events in our 

main original source of historical data before 1964 – the ISS Catalog. Some of these events in the 

first part of the 20th century could be large enough to have caused damage. The work of including 

many more earthquakes recorded at teleseismic distances and bringing previously unavailable 

station amplitude data from historical station bulletins would greatly contribute to more accurate 

consequent analysis of global earthquake hazard and risk. 
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1 Introduction 

In 2010, the Global Earthquake Model (GEM) Foundation issued a call for proposals to compile a reference 

Global Instrumental Earthquake Catalogue (1900-present) to be used for characterization of the spatial 

distribution of seismicity, the magnitude frequency relation and the maximum magnitude. The International 

Seismological Centre (ISC) made a successful bid for this proposal by bringing together an international team 

of most experienced professionals in the field willing to deliver the required product: 

 Dmitry A. Storchak (ISC, UK) 

 Domenico Di Giacomo (ISC, UK) 

 István Bondár (ISC, UK) 

 James Harris (ISC, UK) 

 E. Robert Engdahl (Colorado University, US)  

 William H.K. Lee (USGS, emeritus, US) 

 Antonio Villaseñor (IES Jaume Almera, Spain) 

 Peter Bormann (Helmholtz Centre Potsdam GFZ, emeritus, Germany) 

 Graziano Ferrari (INGV/SISMOS, Italy) 

The Project was managed by Dmitry Storchak, the Director of the ISC, with scientific input from William Lee. 

The work was overseen by observers on behalf of the International Association of Seismology and Physics of 

the Earth’s Interior (IASPEI) to guarantee validation of the Catalogue and its acceptance as a true reference in 

seismic hazard studies:  

 Peter Suhadolc (University of Trieste, Italy), 

 Roger Musson (British Geological Survey, UK), 

 Johannes Schweitzer (NORSAR, Norway), 

 Göran Ekström (Columbia University, US), 

 Nobuo Hamada (Japan Meteorological Agency, emeritus, Japan) 

The ISC offered the GEM Foundation the existing efficient and internationally recognized facility, operating 

under non-governmental status and routinely producing one-year’s worth of the most complete seismic 

bulletin on a global scale each calendar year (Adams et al, 1982). As many as 8 IT, Data Entry and Administration 

staff at the ISC worked on this project. 

In this final report, we describe the procedures and results of several closely related tasks that contributed 

towards the reliable and uniform global catalogue of large earthquakes during the 110 year period in line with 

the proposed cut-off magnitudes: 

 1900-1917: magnitude ≥ 7.5 worldwide plus selection of smaller shallow events in stable continental 

areas; 

 1918-1959: magnitude ≥ 6¼; 

 1960-2009: magnitude ≥ 5.5. 
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2 Processing of Historical Paper-Based Sources 

Here we describe the work of collecting, reviewing, digitizing and interpreting data from a multitude of 

historical sources: paper-based global earthquake catalogues as well as the individual observatory and network 

bulletins containing parameters of large earthquakes of the past.  

The preliminary earthquake selection was done using available magnitude estimates from different sources. 

2.1 Processing of Data from Existing Global Earthquake Catalogues 

To perform the relocation of selected earthquakes that occurred prior to 1964 (the start date of the digitally 

available ISC bulletins) we had to collect the phase arrival time data from different sources that were available 

only in either printed or a hand-written form. These have been converted to a digital form using two methods. 

For good quality printed bulletins with standard formats we have used optical character recognition (OCR) 

techniques. In case of poor quality variable formats and hand-written sources we entered the data manually. 

2.1.1 1904-1912: Gutenberg notepads  

During the period 1904-1912, the main source of seismic phase arrival times is the Gutenberg’s collection of 

notepads. This collection is available on microfiche (Goodstein et al., 1980) and also as a collection of scanned 

images kindly provided to the project by Professor Abe. When available, we have used the scanned images 

because these are of slightly higher quality compared to the microfiches. However some of the notepads had 

not been scanned in which case we had to use the microfiches. 

Gutenberg’s notepads are hand-written, and both the scanned images and microfiches are of poor quality, 

making it impossible to use OCR methods. Therefore we entered P and S wave arrival time data by hand. The 

total number of earthquakes processed from this time period was 56. 

2.1.2 1913-1917: Seismological Bulletin of the British Association for the Advancement of Science (BAAS) 

During the period 1913-1917, the most useful source of associated phase arrival times are the Seismological 

bulletins of the British Association for the Advancement of Science (BAAS). These bulletins are the predecessors 

of the International Seismological Summary (ISS), and are available in good quality printed form. However the 

format changes slightly from year to year, making it difficult to use automated methods based on OCR. 

Therefore, we also opted to enter the phase arrival time data of P, S and supplementary phases by hand. The 

number of earthquakes processed from this period was approximately 50. 

2.1.3 1918-1963: International Seismological Summary (ISS) 

During the period 1918-1963, the main source of phase data is the International Seismological Summary (ISS). 

These bulletins are available in a fairly stable printed form with some of the data already converted to digital 

form prior to the beginning of this project: 

 A digital file containing hypocentre and phase data for most of the earthquakes during 1918-1942 was 

available thanks to the efforts of Pat Willmore and Edouard Arnold (the first two Directors of the ISC), 

who arranged for the ISS bulletins to be typed at a professional data preparation bureau based near 

Shannon airport in Eire (Ireland). Unfortunately, the ISC funds at the time were too short to allow this 
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work to continue beyond data year 1942. This file (hereafter referred to as the “Shannon tape”) was 

created by manually entering the observations from the ISS bulletins onto punch cards. 

 All earthquakes in the ISS for 1960-1963 were already relocated by Villaseñor and Engdahl (2007) and 

the phase data were also available in digital form. 

 All earthquakes in the ISS with MS  7.0 were part of the Centennial Catalog (Engdahl and Villaseñor, 

2002), hence the corresponding phase data were also available. 

We nevertheless needed to enter the phase data for some earthquakes missing from the Shannon tape (1918-

1942) as well as for majority of earthquakes with 6.25  MS < 7.0 in 1943-1959. We have used OCR to convert 

these data to digital form because the quality of the printed bulletins is good and the phase data are listed in 

homogeneous tabular form. All ISS bulletins had been previously scanned as black and white TIFF images at a 

resolution of 600 dpi. We used the commercial software Textbrigde to perform automatic OCR of all ISS bulletin 

pages. Then we proof read those pages that contained data for the selected earthquakes. The proof reading 

was done with the help of an in-house built computer program that corrected the most common 

misidentifications (number “1” for the letters “l” or “i”, number “0” for the letter “O”, etc), and checked for 

invalid values in different columns in the table such as the station name, distance, azimuth, P, S and 

supplementary phases times and residuals. The number of earthquakes processed from this period was 

approximately 700. 

2.2 Processing of Individual Historical Seismic Station and Network Bulletins 

The main disadvantage of the majority of global catalogues previously described was the absence of 

earthquake magnitude estimates and, most importantly, the absence of seismic wave amplitude data that in 

the majority of cases had to be sourced by the ISC historical data entry team from the original observatory and 

network bulletins. 

2.2.1 Preparation of the historical bulletins 

The processing of historical seismic bulletins was the core of the whole project and involved the most time 

consuming work of dealing with the ISC historical seismic station bulletin collection along with selected 

bulletins from USGS/Berkeley (courtesy of W. Lee), scanned bulletins available from Schweitzer and Lee (2003) 

as well as the scanned materials provided by the Institute of Seismology in Bishkek, Kyrgyzstan and by the 

Geophysical Survey of Russian Academy of Sciences in Obninsk. 

The main target of this task was to retrieve surface wave amplitude data for MS re-computation from individual 

station bulletins covering the period 1900-1970. This is because the ISC database already contained surface 

wave amplitudes/periods starting from 1971. 

Up to five data entry officers at each time worked at the ISC on this project since August 2010 for more than 

18 months. 
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Figure 2.1 A view of the ISC warehouse containing the original collection of historical seismic station bulletins. 

 

The first step was to assess the original historical station bulletins that were originally stored in chronological 

order in the ISC warehouse in cardboard boxes, as seen on the left hand side of the Figure 2.1. The bulletins 

were taken out of boxes and re-organised per country and observatory in chronological order. Particulars of 

each booklet have been registered in the database for further reference. These included basic information 

such as institution and publication names, year, town, country, etc. Interactive data entry screens with 

underlying checks and database entry programs have been developed to increase the speed and accuracy of 

data entry. The final Bulletin Registry (up to year 1970) now includes 15,257 individual entries covering 

volumes from 293 institutions in 80 countries. While building the Bulletin Registry, the quality and the 

suitability of each observatory bulletin was assessed. Priority was given to observatories providing reliable and 

systematic surface wave amplitude measurements for earthquakes recorded at teleseismic distances. The 

bulletins were consequently subdivided into groups depending on the availability of reliable surface wave 

amplitude readings and length of time for which each observatory product is available. Therefore, the entire 

bulletin collection was subdivided into the following three groups (Figure 2.2): 

1. Bulletins of primary importance for magnitude determination that must be used; 

2. Those bulletins that could be helpful yet were to be used only if resources would permit; 

3. Those bulletins that can’t be used for earthquake magnitude determination. 

It is important to note that the bulletin registry time coverage did not guarantee that data for earthquakes in 

a given period is available in a specific bulletin, yet the Registry is still useful to indicate the data gaps for a 

station/institution. It must be pointed out also that some institution bulletins (e.g., the “Academy of Sciences, 

USSR”) provided data from a large network of stations therefore the number of individual seismic stations 

actually processed is larger than shown on Figure 2.2 in red. 
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Figure 2.2 Bulletin Registry time coverage: in red are shown bulletins belonging to group 1, blue to group 2 and green 

to group 3; see text for details. 

2.2.2 Entering parametric station records into the database 

Although both the seismic phase arrival times and the seismic wave amplitude data have been entered, the 

most important benefit of the historical bulletin data entry work was in providing data for earthquake 

magnitude computation. The data entry effort benefitted from a dedicated interactive web browser interface 

developed at the ISC to limit the amount of manual work. Once entered, the data were automatically inserted 

into the database. 

Specific criteria were formed to decide whether or not an individual reading (in the ISC jargon a reading groups 

all the parametric data from a single station associated to a specific earthquake and reported by the same 

agency) from a bulletin was relevant to an event of interest. For example, when a reading for an earthquake 

to be relocated is available in the station bulletin, the data entry team checked the availability of period and 

amplitude data for surface and body waves. An example of a reading selected is shown on Figure 2.3 for station 

Göttingen (Germany) for the well-known 1906 San Francisco earthquake. Figure 2.4 shows the same data 

stored in digital format.  
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Figure 2.3 An example of the Göttingen station bulletin with the reading of the 1906 San Francisco earthquake 

 

 

Figure 2.4 Göttingen data from the reading on Figure 2.3 as available in the database 

 

Both the format and contents of each bulletin were subject to an abrupt change over a long period of time, 

hence care and attention to detail was essential in features such as a change of layout, language or phase 

names. Due to limitations in funding over many years, the concurrent ISS/ISC staff used only those parameters 

from the incoming bulletins that were immediately required for its operation. Thanks to the current data entry 

effort, amplitudes and periods of surface waves for many large events of the 20th century have now become 

electronically available. 

Over 34,000 readings have been added to include over 110,000 phases with valid amplitudes and periods for 

magnitude re-computation. To further emphasize the importance of these data, Figure 2.5 shows the standard 

travel time plots that allow comparison of the volumes of parametric data from the ISS bulletins (where 

amplitudes are not available) and data entered from the historical station and network bulletins. 
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Figure 2.5 Travel time plot for ISS data for earthquakes during the period 1918-1963 is on the left; on the right is a 

similar graph for readings with amplitudes obtained from the individual station bulletins. Note the green symbols 

representing the surface wave amplitude electronically available for the first time on a global scale from several 

stations 

Obviously, the ISS data and the new amplitude data made available during this project complement each other 

and are both of fundamental importance for computing homogeneous locations and magnitudes throughout 

the historical period.  

The time coverage for individual seismic stations contributing to magnitude re-computations is shown on 

Figure 2.6. 

The impact of both World War I and II can be seen as gaps in the reporting from many stations. There are only 

a few stations that worked almost continuously during the historical period. These are the Uppsala (UPP, 

Sweden), which is probably the best example of an excellent seismic observatory during the period 1906-1970, 

Riverview (RIV, Australia) and La Paz (LPZ, Observatorio San Calixto, Bolivia). Almost all good quality European 

stations as well as stations of the Russian Empire and the Former Soviet Union show gaps in reporting, mainly 

during the World War I and II. Large gaps, both in space and time, are also present in the southern hemisphere, 

in North America and in Africa. Despite these gaps, however, the time-space station distribution of available 

data usually provided a good azimuthal coverage for the determination of magnitudes of over 4,500 relocated 

earthquakes between 1904-1970. 
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Figure 2.6 Top: locations of stations for which amplitude data has been added during this project. Bottom: time 

coverage for each station shown in the map; each vertical segment represents the earthquake origin time for which a 

reading of a station has been added. The inset shows stations in Central Europe in large scale 

2.3 Remarks 

As a result of the 18 months long data collection and digitising effort, we complemented digitally available data 

of the ISC Bulletin with bulletin data that extended it into the past until year 1900. 

It has to be noted that no sufficient volume of parametric station data was found to run the standard relocation 

and magnitude estimation in the period 1900-1903, hence the hypocentre parameters of all earthquakes in 

this period were adopted from Abe and Noguchi (1983a,b). 
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3 Earthquake Relocation 

In order to obtain improved locations for the ISC-GEM Catalogue covering the period 1904-2009, we follow a 

two-tier procedure using the EHB (Engdahl et al., 1998) and the ISC (Bondár and McLaughlin, 2009a; Bondár 

and Storchak, 2011) location algorithms. Both the EHB and ISC location algorithms use all reported phases in 

line with the IASPEI standard (Storchak et al., 2003 and 2011) with a valid ak135 (Kennett et al., 1995) 1D travel-

time prediction in the location, together with elevation, ellipticity (Dziewonski and Gilbert, 1976; Kennett and 

Gudmundsson, 1996; Engdahl et al., 1998), and depth-phase bounce point corrections (Engdahl et al., 1998). 

The application of two of the most advanced single-event location algorithms provides the necessary quality 

assurance to produce highly accurate event locations for the ISC-GEM Catalogue. 

For the historical period (1904-1963) where the ISC-GEM data collection effort provided data from the scanned 

ISS bulletins (Villaseñor and Engdahl, 2005; 2007), original station reports from the ISC archives and the 

Gutenberg notepads, we obtain the initial estimates of event hypocentres using the new ISC location 

algorithm. For the modern period (1964-2009) where no substantial volume of station readings has been 

added to the ISC database, we simply use the preferred solution from the ISC bulletin.  

Using the initial locations described above the locations and depths of all events included in the ISC-GEM 

Catalogue are first determined using the EHB algorithm. In the absence of depth constraint by local station 

phase data, the EHB algorithm provides a comprehensive analysis of reported phases that can significantly 

improve event depth estimates by identifying and utilizing near-event surface reflections (depth phases). The 

new ISC location algorithm is used next with earthquake depths fixed to those from the EHB analysis. The ISC 

algorithm provides independent depth confirmation using depth phase stacking and also provides more 

accurate hypocentre locations by taking correlated travel-time prediction error structure into account. 

3.1 Earthquake Depth Determination 

Depth phases provide important constraints on event depth because their travel time derivatives with respect 

to depth are opposite in sign to those of the direct P phase. Depth to origin time trade-off is also avoided by 

the inclusion of depth phases. These phases are commonly reported as pP or sP (a P-wave or S-wave reflecting 

off of a hard rock interface, respectively) or as pwP (a P-wave reflected off the ocean or ice surface). However, 

often as not these phases are simply reported as unidentified phase arrival times. With knowledge of an event 

depth and distance, potential depth phase arrivals are re-identified following each iteration in the EHB 

procedure using a probabilistic association algorithm. Probability density functions (PDF) for depth phases, 

centered on their theoretical relative travel times for a given hypocenter, are compared to the observed phase 

arrivals. When PDFs overlap for a particular depth phase, phase identification is assigned in a probabilistic 

manner based on the relevant PDF values, making sure not to assign the same phase to two different arrivals. 

This procedure works relatively well in an automatic fashion, but the phase identifications can depend heavily 

on the starting depth, which in most cases is not well known. Hence, depth phase identifications for every 

event in the ISC-GEM Catalogue have been manually scrutinized for the possibility of an erroneous local 

minimum in depth because of a poor starting depth and adjusted accordingly. Normally, at least five 

corroborating depth phases are necessary to for an EHB depth to be accepted. 
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In order to determine pwP arrival times and correct all depth phases for topography or bathymetry at their 

reflection points on the earth's surface, it is necessary to first determine the latitude and longitude of these 

bounce points and then the corresponding seafloor depth or continental elevation. Bounce point coordinates 

are easily computed from the distance, azimuth and ray parameter of the depth phase (pP in the case of pwP). 

The NOAA ETOPO1 global relief file (Amante and Eakins, 2009) was averaged over 5 x 5 minute equal area cells 

and then projected on a 5 x 5 minute equi-angular cell model using a Gaussian spatial filter. The use of a 

smoothed version of ETOPO1 is justified because the reflection of a depth phase does not take place at one 

single point, but over a reflection zone with a size determined by the Fresnel zone of the wave. The maximum 

half width of a ray with a wavelength of 10 km and a ray path length of 1000 km is estimated to be 36 km 

(Nolet, 1987). The topographic and bathymetric information in this version of ETOPO1, referred to bedrock, is 

used to determine the correction for bounce point elevation/depth, which is added to the computed travel 

times for depth phases. Theoretical times are not computed for pwP phases in the case of bounce point water 

depths ≤ 1.5 km because it is nearly impossible to separate the pP and pwP arrivals on most records (about 2s 

separation). 

Despite the general success of the EHB procedures for depth determination, there remain some issues that 

must be taken into account. For example, the relative frequency (or amplitude) of depth phase observations 

is sensitive to local structure at bounce points. Many depth phases reflect in the vicinity of plate boundaries 

where the slopes of surface reflectors are large (> 1 degree). Reflections at a dipping reflection zone may lead 

to small asymmetries in depth phase waveforms and, may influence their relative amplitudes, resulting in a 

greater potential for phase mis-identifications. In addition, for short-period (1s) waves, water-sediment 

interfaces at the sea bottom may have small impedance contrasts. Consequently, on short-period seismograms 

the amplitude of a pwP phase may be comparable to or larger than the pP phase reflecting at the sea bottom, 

and pwP may easily be mis-identified as pP. 

One outstanding issue is that for large shallow-focus complex earthquakes pP often arrives in the source-time 

function of the P phase, which may consist of one or more sub-events. The gross features of the source-time 

functions of P and pP, however, remain discernible in broadband displacement records and the exact onset 

times of depth phases can be further refined by examination of velocity seismograms that are sensitive to small 

changes in displacement. For the GEM project we have relied primarily on reported phase arrival times, usually 

read from short-period seismograms. However, for large complex events EHB depths ordinarily have to be set 

to depths published by USGS/NEIC that have been determined by rigorous analysis of phase arrival times read 

from broadband seismograms. 

Finally, there are many events in the ISC-GEM Catalogue for which there are no reported depth phases or for 

which those that were reported are inconsistent, especially in the earlier part of the 20th century. For these 

events a nominal depth is adopted, based on the depth distribution of neighbouring events that are well 

constrained in depth and are consistent with other event depths in that tectonic setting. For every subduction 

zone worldwide, all ISC-GEM events were plotted in cross section with respect to the arc center of curvature 

to assist in setting depths of those events that have no other available depth constraints.  

3.2 Earthquake Epicentre and Origin Time Determination 

In the next step of ISC-GEM location procedures we determine the earthquake epicenter and origin time 

parameters by fixing the depth to that obtained from the EHB analysis. The EHB location and origin time are 

used as the initial guess for the ISC locator. The ISC location algorithm can further refine the locations because 
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it reduces the location bias introduced by the correlated travel-time prediction error structure due to 

unmodeled 3D heterogeneities in the Earth.  

Figure 3.1 shows the total number of associated phases and those that are used in the location in each year. 

As the number of phases increases almost exponentially in time, the number of phases traveling along similar 

ray paths increases accordingly, contributing more and more to the potential location bias. Thus, accounting 

for the correlated error structure becomes imperative. 

 

 

Figure 3.1 Annual number of associated (blue) and defining (red) phases in the ISC-GEM Catalogue. A defining phase is 

used in the location 

 

Figure 3.2a shows the distribution of location differences between the EHB and ISC locations for events in the 

ISC-GEM Catalogue. 50% of the locations are within 9km of each other and 90% of the location differences are 

less than 20 km. Given that the ISC-GEM Catalogue locations are predominantly teleseismic, the EHB and ISC 

locations show remarkable consistency. Figure 3.2b shows the location deviations with respect to the EHB 

locations. The plot indicates that there is no bias between the EHB and ISC locations.  

 

Even though the depth is fixed to the EHB depth, the ISC location algorithm may obtain an independent depth 

estimate through the depth-phase stacking (Murphy and Barker, 2006) provided that sufficient number of first-

arriving P and depth-phase pairs are available. Some 65% of the events in the ISC-GEM Catalogue also have 

depth estimates from the depth phase stacking. Figure 3.3 shows an excellent agreement between the depths 

obtained through the EHB depth determination procedures and the depth-phase stacking. 
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(a)      (b) 

Figure 3.2 a) Histogram of distances between the EHB and ISC locations for events in the ISC-GEM Catalogue. The 50%, 

90% and 95% percentile points on the cumulative distribution (red) are marked the vertical red lines. b) The 

deviations between the EHB and ISC locations show no bias 

 

 

Figure 3.3 Histogram of the difference between the depth estimates from depth phase stacking and the EHB depth 

determination. The 5%, 10%, 50%, 90% and 95% percentile points on the cumulative distribution (red) are indicated 

by the red vertical lines 

3.3 Uncertainty Estimates and Quality Flags 

Accounting for correlated errors not only reduces location bias, but also provides more accurate uncertainty 

estimates. Most location algorithms assume independent, normally distributed observational errors. 
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Unfortunately, this assumption rarely holds.  Because the 1D global average velocity model used in the location 

does not capture all the 3D velocity heterogeneities, travel-time predictions along similar ray paths become 

correlated, decreasing the effective number of degrees of freedom. Because the number of independent 

observations is less than the total number of observations used in the location, the assumption of 

independence inevitably leads to underestimated uncertainty estimates. Since the ISC location algorithm uses 

the effective number of degrees of freedom, the formal location uncertainties described by the a posteriori 

model covariance matrix become larger, resulting in enlarged and more circular error ellipses. Figure 3.4 shows 

the distribution of origin time uncertainty and the area of the error ellipse, both scaled to the 90% confidence 

level. The median origin time uncertainty is 0.25s and the median area of the error ellipse is 105 km2. 

 

 

(a)      (b) 

Figure 3.4 Histograms of the a) origin time uncertainty, and b) area of the 90% confidence error ellipse for events in 

the ISC-GEM Catalogue. The 50%, 90% and 95% percentile points on the cumulative distribution (red) are marked the 

vertical red lines 

 

Besides the formal location uncertainty estimates, i.e. the semi-axes and strike of the 90% confidence error 

ellipse, we also provide qualitative flags to indicate the quality of the location based on measures of the 

network geometry. Figure 3.5 shows the cross-plot of secondary azimuthal gap and the eccentricity of the error 

ellipse for all candidate events processed for the ISC-GEM Catalogue. The secondary azimuthal gap is defined 

as the largest azimuthal gap when removing a single station (Bondár et al., 2004). The eccentricity varies 

between 0 and 1; at zero eccentricity the error ellipse becomes a circle, indicating evenly distributed stations 

around the event, while the error ellipse degenerates to a line at a unit eccentricity, indicating that all stations 

aligned at a single azimuth from the event. 
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Figure 3.5 Error ellipse eccentricity as a function of secondary azimuthal gap. The thick red line indicates the median 

curve; the 10% and 90% percentile curves are drawn by thin red lines 

 

The location quality flag ‘A’ is assigned to events that qualify for GT5 candidate (Bondár and McLaughlin, 

2009b) or recorded with a secondary azimuthal less than 120° and with an error ellipse eccentricity less than 

0.75. The remaining events that are recorded with a secondary azimuthal gap less than 160° get a location 

quality flag ‘B’; the location quality flag ‘C’ is assigned to the rest of the locations. Note that events recorded 

with a huge secondary azimuthal gap (sgap ≥ 270°) or events recorded only with a small number of stations 

(nsta ≤ 5) are considered unreliable locations and are listed in the Appendix of the ISC-GEM Catalogue. 

Because the depth is fixed to the EHB depth, no formal depth uncertainties can be calculated by the ISC locator. 

In order to provide a depth uncertainty, we use the depth-phase depth uncertainty from the depth phase 

stacking, if available. These are typically the events where the EHB depth determination procedures relied on 

the reported depth phases. For events with a nominal depth assigned by the EHB procedures based on the 

depth distribution of neighboring events we estimate the depth uncertainty as the median absolute deviation 

of the depths in the corresponding ISC default depth grid cell if it exists, otherwise we set the depth uncertainty 

to a nominal 25 km. 

The depth quality flag ‘A’ is assigned to events that qualify for GT5 candidate (Bondár and McLaughlin, 2009b), 

or have a depth-phase stack depth estimate, or there is at least one station within 10km from the epicentre. 

The remaining events that are recorded with two or more stations within 150 km from the epicentre get a 

depth quality flag ‘B’; the depth quality flag ‘C’ is assigned to the rest of the depth estimates. 

3.4 Earthquake Relocation Results 

The ISC-GEM Catalogue consists of 18,781 earthquakes between 1900 and 2009. Apart from 10 events 

between 1900 and 1903, for which we adopt the hypocentre parameters from the Abe Catalog (Abe, 1981, 
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1984; Abe and Noguchi, 1983), we relocated all earthquakes using the two-step location procedure described 

above.  

One of the major objectives of this project was to provide improved hypocentre estimates for events in the 

ISC-GEM Catalogue. To achieve this goal we launched an ambitious data entry effort to add station readings 

that did not exist in digital form before. For events occurring between 1904 and 1963 some 1,200,000 

observations were entered into the database either from the station reports in the ISC archive or by digitizing 

the scanned images of the ISS bulletin (Villaseñor and Engdahl, 2005; 2007). Of the total number of added 

phases some 600,000 are P-type phases, 300,000 are S-type phases, and the rest are amplitude readings. Some 

665,000 P and S type phases contributed to the relocation of events in the historical period. Although no 

substantial amount of new phase data were acquired for the modern period (1964-2009), the number of 

phases used in the location has still dramatically increased. Recall that in the past the vast majority of locations 

in the ISC bulletin were obtained using only first-arriving Pg, Pn and P phases. The number of defining phases 

used in the location in the modern period increased from 5,369,057 to 8,323,832 owing to fact that both the 

EHB and ISC locators use all ak135 phases in the location. 

Figure 3.6 shows the median number of stations and the median secondary azimuthal gap together with their 

25% - 75% quartile ranges and extreme values in each decade. As the number of stations used in the location 

increases with time, the median secondary azimuthal gap decreases and levels off around 45°. 

 

               

(a)       (b) 

Figure 3.6 Box-and-whisker plot of a) the number of stations, and b) the secondary azimuthal gap in each decade. Blue 

boxes represent the 25% - 75% quartile ranges; blue lines indicate the full, minimum to maximum range 

 

The preferred locations before the ISC-GEM project constituted a mixture of locations from the Abe (Abe, 1981, 

1984; Abe and Noguchi, 1983), the Centennial (Engdahl and Villaseñor, 2002), the ISS (Villaseñor and Engdahl, 

2005; 2007) and the ISC catalogues. We compare these locations (before) to the ISC-GEM locations (after). 

Figure 3.7 shows the locations before and after the ISC-GEM relocations for the entire period, 1900-2009.  Even 

at the global scale it is apparent that the earthquake locations are better clustered in the ISC-GEM Catalogue. 

In the historical period many event depths were fixed to the surface; due to the better depth estimates, this 

artifact is removed from the ISC-GEM Catalogue.  
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Figure 3.7 Preferred locations a) before and b) after the ISC-GEM relocations. The ISC-GEM locations show an 

improved view of the seismicity of the Earth 

 

Figure 3.8 shows the distributions of location and depth differences before and after the ISC-GEM relocations. 

The median distance between the before and after locations is 10km. 90% of the events moved by less than 

25km, and 90% of the depth changes are between ±20km.  

a) 

b) 
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(a)      (b) 

Figure 3.8 Distribution of a) location, and b) depth differences before and after the ISC-GEM relocations. The 50%, 90% 

and 95% percentile points on the cumulative distributions (red) are marked the vertical red lines 

 

We expect that the largest differences between the before and after ISC-GEM relocations will come from the 

early years. Figures 3.9-3.10 show the minimum, maximum and the 25% - 75% quartile range of the location, 

depth and origin time differences in each decade. These box-and-whisker plots confirm that the large 

variations level off with time. 

 

 

Figure 3.9 Box-and-whisker plot of the location differences before and after the ISC-GEM relocations in each decade. 

Blue boxes represent the 25% - 75% quartile ranges; blue lines indicate the full, minimum to maximum range. Event 

locations change the largest extent in the first three decades 
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(a)      (b) 

Figure 3.10 Box-and-whisker plot of a) the depth, and b) origin time differences before and after the ISC-GEM 

relocations in each decade. Blue boxes represent the 25% - 75% quartile ranges; blue lines indicate the full, minimum 

to maximum range. The apparent bias in the first six decades is due to the fact that previously many event depths 

were fixed to the surface 

 

Figures 3.11-3.13 show the seismicity maps before and after the ISC-GEM relocations in 20-year long segments. 

Most of the large location changes occur in the first half of the century; the effect of improved depth estimates 

and better clustering can be seen through the entire period. 

  

 

Figure 3.11 Preferred locations before and after the ISC-GEM relocations between a) 1900 and 1920,  

and b) 1920 and 1940  

 

a)   b) 
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Figure 3.12 Preferred locations before and after the ISC-GEM relocations between a) 1940 and 1960,  

and b) 1960 and 1980 

 

 

Figure 3.13 Preferred locations before and after the ISC-GEM relocations between a) 1980 and 2000,  

and b) 2000 and 2009  

 

a) 

a) 

b) 

b) 
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Finally, Figures 3.14-3.22 show the three-dimensional seismicity maps for some active tectonic regions before 

and after the ISC-GEM relocations. We conclude that owing to the ISC-GEM location procedures and to the 

substantial increase in the volume of observational data used in the relocations, the ISC-GEM Catalogue offers 

an improved view of the seismicity of the Earth with significantly better depth estimates and considerably 

reduced scatter in location estimates. 

 

Figure 3.14 Preferred locations before (left) and after (right) the ISC-GEM relocations in the Caribbean region  

 

 

Figure 3.15 Preferred locations before (left) and after (right) the ISC-GEM relocations in the Fiji – Tonga – Kermadec 

Islands region 
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Figure 3.16 Preferred locations before (left) and after (right) the ISC-GEM relocations in the Guam – Honshu – Ryukyu 

Islands region 

 

 

Figure 3.17Preferred locations before (left) and after (right) the ISC-GEM relocations in the Hindu Kush – Pamir region  
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Figure 3.18 Preferred locations before (left) and after (right) the ISC-GEM relocations in New Zealand  

 

 

Figure 3.19 Preferred locations before (left) and after (right) the ISC-GEM relocations in the Philippines  
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Figure 3.20 Preferred locations before (left) and after (right) the ISC-GEM relocations in South America  

 

 

Figure 3.21 Preferred locations before (left) and after (right) the ISC-GEM relocations in the South Sandwich Islands 

region  
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Figure 3.22 Preferred locations before (left) and after (right) the ISC-GEM relocations in Indonesia 
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4 Determination of Earthquake Magnitudes 

In order to obtain the most homogeneous record of earthquakes for consequent seismic risk and hazard 

assessment, the GEM Foundation requested to express the magnitudes of all earthquakes in the catalogue in 

terms of MW.  

To fulfil this requirement we used the following strategy. Existing direct measurements of MW were given a 

priority. Hence, in the period 1976-2009, where possible, we obtained the MW determinations from Global 

CMT project (Section 4.1, Figure 4.1). For earthquakes in the period 1900-1979, we also performed a 

comprehensive search of quality scientific articles to obtain M0 (and consequently MW) determined by 

individual researchers (see Section 4.2).  

In parallel, where possible, we computed conventional MS and mb magnitudes, using the original amplitudes 

and periods of surface and body waves reported by station operators in the multitude of bulletins and 

catalogues described in Section 4.3. Based on the large volume of data in the ISC database, we devised an 

improved regression scheme (Section 4.4) that allowed us to compute MW proxy values (magnitudes values to 

be used in lieu of the direct measurements of MW) based on conventional surface and body wave magnitudes. 

The description of how these conventional magnitudes have been obtained can be found in Section 4.3. 

 

 

Figure 4.1 Distribution of MW in the ISC-GEM Catalogue per source of information: GCMT, bibliographical search or re-

computation from MS or mb 

 

In order to provide the most reliable magnitude value for every earthquake in the catalogue, in case of several 

magnitude estimates available for a single earthquake, we gave priority to MW values in the following order: 

1. MW GCMT; 

2. MW from bibliographical search; 

3. MW proxy based on MS; 
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4. MW proxy based on mb. 

Those earthquakes with no MW proxy values were removed from the main catalogue and placed into the 

appendix. Earthquakes occurred during the 1900-1903 period have been assigned with proxy MW recomputed 

from MS of Abe and Noguchi (1983a,b) according to regression model described in Section 4.4. 

It has to be noted that a computation of MW proxy values based on regressions from other types of magnitudes 

does not bring similarly reliable results as compared to a direct measurement of MW based on the original 

waveform analysis. It is, nevertheless, a necessary measure since the direct measurement of MW using 

historical analogue waveforms on a global scale is beyond the scope of this project. To address this issue we 

introduced a scheme of MW quality flags (A, B or C) (see Section 4.5); users are strongly encouraged to take a 

note of these flags in order to take into account reliability of each magnitude determination. 

Finally, Figure 4.2 shows a magnitude timeline that exhibits a distribution of direct versus proxy (regression 

from MS/mb) determinations of MW in the final ISC-GEM Catalogue. It is clear that prior to 1976, the ISC-GEM 

Catalogue would have been several units of magnitude less complete without MW proxies. 

 

 

Figure 4.2 Magnitude timeline of the ISC-GEM Catalogue showing earthquakes with direct determination of MW (red) 

and those MW proxies (blue) determined by means of regression from MS/mb 

 

The following sections provide the detailed description of the process of magnitude determinations in the final 

ISC-GEM Catalogue. 

4.1 MW from the Global CMT Catalog 

The Global Centroid Moment Tensor (GCMT) Catalog is acknowledged as the authoritative agency for 

computing the moment tensor solutions for earthquakes worldwide. The catalogue is available at 

http://www.globalcmt.org/ and is the continuation of the Harvard CMT project (Dziewonski et al., 1981). Today 

http://www.globalcmt.org/
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the GCMT project is leaded by G. Ekström at the Lamont-Doherty Earth Observatory of Columbia University 

(Ekström et al., 2012). 

Figure 4.3 shows the annual distribution of earthquakes in the ISC-GEM Catalogue with MW from both GCMT 

and those originated from the bibliographical search (See Section 4.2). The GCMT MW values before 1976 relate 

exclusively to deep earthquakes. Out of 12,182 in the ISC-GEM Catalogue between 1976 and 2009, only 1,216 

have no GCMT magnitude available. 

 

 

Figure 4.3 Annual number (top) and magnitude distribution (bottom) of earthquakes in ISC-GEM Catalogue with MW 

magnitudes from GCMT (red) and bibliographical search (blue) 

4.2 MW from Bibliographical Search 

Here we describe the task of compiling seismic moments and related information from the published literature 

for earthquakes before 1980 and selecting preferred seismic moment values M0 with a quality assessment.  

Selected values of M0 were then used to compute the moment magnitudes, MW[M0] with error assignments 

based on our quality assessment.  The period from 1977 to 1979 provides some comparisons between the M0 

values in the GCMT Catalog and those calculated by other authors.  
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The following sub-sections describe the moment compilation procedure, selection of preferred seismic 

moment values and comments.  Appendix B describes a list of references for the 1,127 papers that have been 

examined.   

4.2.1 Procedure for Compiling Seismic Moment Values 

We used the IASPEI formula for computing MW based on M0: 

MW = (2/3) (log M0 – 9.1) (4.1) 

This way of writing Eq. (4.1) was first proposed by Bormann et al. (2002). It avoids frequent inconsistencies of 

MW values reported by different agencies with a precision of 0.1 magnitude units, depending on whether or 

not MW has been calculated according to formulas equivalent with Eq. (4.1) or formulas obtained by first 

expanding Eq. (4.1) and then rounding-off constant terms (as in the original relationship: (2/3) log M0 – 10.7 

published by Hanks and Kanamori (1977).  The NEIC and the Harvard (now GCMT) groups have agreed to 

calculate and correct backward the MW values given in their catalogues according to the IASPEI recommended 

standard (i.e., Eq. (4.1)). 

The first compilation of seismic moments appeared in Kanamori and Anderson (1975) when these authors 

presented the theoretical basis of some empirical relations in seismology.  A more extensive compilation 

appeared in Kanamori (1977) when the MW scale was first introduced in a landmark paper on the energy 

release in great earthquakes.  The moment magnitude scale was introduced by Hanks and Kanamori (1979), 

and they proposed the symbol, M, for moment magnitude. However, it has few followers. As explained above, 

MW as originally introduced by Kanamori (1977) is now generally known as the moment magnitude. 

Since 1977, many compilations of seismic moments and/or moment magnitudes were published.  Two popular 

compilations are: Pacheco and Sykes (1992), and Wells and Coppersmith (1994).  Since we only need seismic 

moments from 1900 to 1979, one would assume that it will be an easy task to update these two catalogues 

with recent papers and add data for the intermediate and deep earthquakes (which accounts about 10% of 

the total seismicity of the Earth).  Unfortunately, this is not the case, because Pacheco and Sykes (1992) omitted 

many published papers (they listed 168 papers up to 1990), and seismic moments in Wells and Coppersmith 

(1994) are 10 times larger than they should due to a typographic error in the exponent of seismic moments. 

We conducted an extensive search of literature using the following procedure.  Starting from several published 

compilations (e.g., Kanamori (1977), and Pacheco and Sykes (1992), their cited references were entered in an 

Excel file.  Computer-readable files of these cited papers were obtained in PDF format (either from online 

sources or by scanning the papers) and printed.  We then examined each paper and extracted seismic moments 

values and related information (such as the earthquake origin time, location, magnitudes, etc.) to an Excel file 

for moment compilation.  In the compilation, we made a note on whether the seismic moment values were 

obtained by the author(s) of the paper, or they were values from previously published paper(s).  We then 

added the cited papers as well as any new references in the paper that were judged to be useful to the Excel 

file of references.  We also made an effort to track down the original papers that published seismic moment 

value(s) for a given earthquake.  

After examining 1,127 papers, we found one or more seismic moment values for 970 events that are in ISC-

GEM Catalogue.  There are also several hundred earthquakes with seismic moment values that are not in the 

ISC-GEM Catalogue. 
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4.2.2 Selecting seismic moments values and uncertainties 

The moments presented in this catalogue have been obtained according to the methodology used in their 

computation: 

 mainstream Harvard or Global CMT type M0, obtained using digitally recorded seismograms; 

corresponding MW uncertainty is set to 0.1; 

 M0, obtained by an inversion procedure using analog seismograms that were digitized by the authors; 

corresponding MW uncertainty is set to 0.2; 

 M0 solutions involving forward modeling of seismic waveforms, in the context of a constrained focal 

mechanism; corresponding MW uncertainty is set to 0.3; 

 M0 estimates obtained using bona fide measurements of physical parameters, but under the philosophy 

of a magnitude scale, i.e., without resolving the exact geometry or depth of the earthquake.  For 

example, Okal and Talandier (1989) measured spectral amplitudes of long-period (> 40 sec) Rayleigh 

waves and interpreted them within the context of a fully justifiable theory (Okal and Talandier, 1987) to 

derive mantle magnitude (Mm ) values, which could then be used to assess their seismic moments (Okal, 

1992a; Okal, 1992b).  Because the effects of focal mechanism and depth are not considered, it is 

expectedly of a lesser quality than a measurement involving complete waveform modeling for a 

(hopefully) exact focal mechanism; corresponding MW uncertainty is set to 0.4; 

 M0 estimates derived from direct field surveys (e.g., geodetic and/or geologic); corresponding MW 

uncertainty is set to 0.4; 

We rejected seismic moment (or moment magnitude) values that was obtained by applying purely empirical 

relationships between seismic moments and other observables.   

4.2.3 Comments on the preferred seismic moments values  

Starting in the early l980s, computing seismic moments became routine because sufficient digital seismograms 

were available. The CMT, and now the GCMT projects have been performing a very useful task in providing 

seismic moment tensor solutions, and thus a uniform set of seismic moment values and moment magnitudes.   

Although the establishment of WWSSN in the early 1960s provided a uniform set of analog seismograms 

worldwide, digitizing analog seismograms is tedious.  Nevertheless, thanks to a few hundred authors, seismic 

moments were determined for about 1,000 individual earthquakes.  Before 1963, collecting, digitizing, and 

interpreting old seismograms is extremely difficult, and only about 200 earthquakes have been studied for 

seismic moments.  Table 4.1 shows the number of earthquakes by decade for which we were able to find M0 

values.  This table indicates that there is a scope for further improvement of this collection. 

4.2.4 Remarks  

We would like to emphasize the following points: 

1. The seismic moment/moment magnitude catalogue presented here should be used with caution.  

Users are urged to consult the original papers, because in any compilation, some important 

information is lost due to condensation into a simple table.  This catalogue is intended to be just a 

guide. 

2. Although we adopted the GCMT double-couple solutions as the “standard”, they may be fine for just 

about 90% of all earthquakes, as some earthquakes have large non double-couple components.  

Users are urged to examine the detailed moment tensor solutions provided by the Global CMT 

online (http://www.globalcmt.org/) for the earthquakes they wish to investigate. 

http://www.globalcmt.org/
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3. In general, we selected seismic moment values based on the more recent papers.  In the case of 

giant earthquakes (such as the 1960 great Chilean earthquake), the seismic moments and thus the 

moment magnitudes often have larger values than those commonly in use.  Users should be aware 

that all earthquake parameters may be subjected to revisions in the future as seismology advances 

in time. 

 

Table 4.1 Number of earthquakes with M0 available in each 10-year period included in the ISC-GEM Catalogue 

Period # earthquakes 

1900-1909 11 

1910-1919 15 

1920-1929 30 

1930-1939 49 

1940-1949 66 

1950-1959 74 

1960-1969 447 

1970-1979 278 

Total 970 

 

4.3 MW proxy based on the ISC-GEM MS and mb determinations 

In order to obtain MW proxy values for earthquakes in the ISC-GEM Catalogue we computed the classical 

magnitude scales such as MS and mb. These computations were based on the ISC-GEM hypocentre solutions 

using the amplitude-period data available from: 

 the ISC-GEM data entry effort (1904-1970); 

 the ISC database (1971-2009); 

 additional ISC-GEM data entry effort (1971-1977) to introduce missing from the ISC database 

amplitudes and periods of surface and body wave recordings at the backbone stations of the Former 

Soviet Union as well as two high quality seismic stations of Sweden (Uppsala and Kiruna). 

These magnitudes served as a basis for computing proxy MW of a large majority of earthquakes before 1976 

(the start of GCMT Catalog) where direct computations of seismic moment M0 were not available. 

4.3.1 Determination of MS 

After the local magnitude (ML) scale introduced by Richter (1935), Gutenberg (1945a) suggested the surface 

wave magnitude so that, differently from ML, the earthquake magnitude could be computed for (shallow) 

earthquakes worldwide by measuring the amplitude of surface wave trains: 

MS = log(AHmax) + 1.656logΔ + 1.818 (4.2) 
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where AHmax is the maximum horizontal ground motion in microns of surface waves with period T = 20 (2) 

seconds and Δ the distance. After Gutenberg (1945a), the formulation of MS has been object of changes. The 

modern formulation reads as: 

MS = log(A/T) max + s (4.3) 

where sidentifies the calibration function of Vanĕk et al. (1962), which reads s≈1.66log
 
for 

distances between 20 and 160, if amplitudes are measured in nanometers. For what concerns the period 

and distance range where the surface wave amplitude is measured, there are basically two standards: 

1. T = 20 (2) or (3) s, and measured at distances between 20 and 160, close to the original 

formulation of Gutenberg, providing what in the modern IASPEI (2005) standard is MS(20); 

2. according to IASPEI (2005), the maximum of A/T is measured in a much wider range of periods and 

distances, namely between 3-60 s and 2 and 160 for the broad-band MS(BB). 

Bormann et al. (2009) showed that differences between MS(20) and MS(BB) are more pronounced below 

magnitude 5.5 (that is below the cut-off magnitude for the ISC-GEM Catalogue), whereas for larger values the 

two agree very well. Over the years, the ISC accepted and used for MS calculation amplitudes in the period 

range 10-60 s, which is very close to the current formulation of MS(BB). This fits well with the practice in the 

early instrumental period. The maximum of A/T, indeed, was measured in a wide period range. This is shown 

on Figure 4.4, where the period here is the maximum of A/T for a reading for data up to 1970 (recall that a 

reading groups all the parametric data from a single station associated to a specific earthquake and reported 

by the same agency).  

Before computing MS for a reading, the vertical MSZ and horizontal MSH are calculated. First the maximum of 

A/T on the vertical component is searched among the surface wave maxima belonging to a reading and, if 

available, MSZ obtained; secondly, for periods (10s) of Tz, MSH is obtained from the maximum of A/T for 

horizontal components as 
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Finally, the reading MS = (MSZ  + MSH)/2 if both exists, or MS  = MSZ or MSH  when one of them is not available. 

Since several agencies may report data from the same station (and this is the especially the case for recent 

years), the MS station magnitude is defined as the median of the reading magnitudes for the same station. 

Once all station MS values are determined, the station magnitudes are sorted and the lower and upper α 

percentiles are made non-defining (α = 20%). The network MS and its uncertainty are then calculated as the 

median and the standard median absolute deviation (SMAD) of the alpha-trimmed station magnitudes, 

respectively. At least 3 station magnitudes are required to compute a network magnitude, with the exception 

of 87 earthquakes in the early instrumental period where only 2 reliable stations have been used to compute 

a MS network magnitude.  

Figure 4.5 shows the number of stations contributing to MS over the two periods. Obviously, in the modern 

period (1971-2009) network MS are obtained from a much larger number of single stations. 
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Figure 4.4 Period distribution over the entire distance range for data up to 1970 (i.e., before surface wave magnitude 

are available in the ISC database). The period is from the maximum of the A/T of a reading. From top to bottom: data 

for N-S, E-W and vertical components 

 

Figure 4.5 Distribution of the number of stations (NSTA) contributing to network MS during 1904-1970 (left) and 

during 1971-2009 (right) 
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In order to use the largest amount of available readings manually entered between 1904-1970 for MS 

computation, surface wave amplitudes in the distance range 2 < Δ < 180 and in the period range 5 ≤ T ≤ 60 s 

have been considered. For the modern period (1971-2009), instead, where the ISC database was plenty of 

single station magnitudes digitally available, amplitude data with Δ < 20 and T < 10 s has been excluded. These 

small differences in distance and period ranges do not imply significant differences between MS obtained up 

to and after 1970, but allowed us to compute more network MS up to 1970 and also from more stations.  

For ISC-GEM Catalogue, MS has been recomputed for earthquakes where the depth minus depth uncertainty 

(Section 3.3) is ≤ 60 km. Figure 4.6 shows the MS recomputed for ISC-GEM Catalogue as function of time as 

well as the number of MS per year. 

 

 

Figure 4.6 Top: number of recomputed MS per year; bottom: recomputed MS versus earthquake origin time 

4.3.2 Determination of mb 

Gutenberg (1945b, c) introduced teleseismic magnitude scales for body-waves which are applicable also to 

deep earthquakes down to source depths of 700 km. The calibration functions were obtained in the medium 

to long periods (2 < T < 30 s) range and for PZ, PH, PPH, PPZ and SH waves. However, only the vertical 

component of P-waves is systematically used (i.e., PZ calibration function) in the last ~50 years. Furthermore, 

with the introduction of the WWSSN in the 1960s, it became routine practice to measure the P-wave amplitude 

in a narrow band, mostly around 1 s. This practice is different from the original body-wave magnitude definition 
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of Gutenberg and is referred to as short-period body-wave magnitude mb. The main advantage of measuring 

the amplitude on P-wave trains filtered around 1 s consists in a better signal-to-noise ratio for small 

earthquakes, allowing teleseismic magnitude to be determined down to mb ≈ 4. This made mb the most popular 

and measured teleseismic magnitude for the last ~50 years. However, being the amplitude measured in a very 

narrow short-period range, mb suffers of saturation for major earthquakes and generally underestimates the 

magnitude for strong earthquakes. This has been showed in several papers (e.g., Gelller, 1976; Kanamori, 1983; 

Bormann et al., 2009). 

IASPEI (2005) established the standards for mb computation as: 

mb = log(A/T) + Q (,h) -3.0 (4.4) 

 

where A = P-wave ground amplitude in nm, calculated from the maximum trace-amplitude in the entire P-

phase train (time spanned by P, pP, sP, possibly PcP and ending preferably before PP), period T < 3 s, and Q(Δ,h) 

are the calibration functions for distances 20 < Δ < 100 and depths h between 0 and 700 km. As previously 

described for MS, first the reading mb, then the station magnitudes mb are obtained, and then the network mb 

as the median of the α-trimmed station magnitudes mb if at least 3 stations are available. 

Similarly to Figure 4.5, Figure 4.7 shows the number of stations contributing to mb over the two periods and 

Figure 4.8 shows the mb recomputed for ISC-GEM. Due to lack of lack of stations equipped with vertical 

component short-period instruments before the WWSSN deployment in the 1960s, only a few mb are obtained 

before 1964. 

 

 

 

Figure 4.7 Distribution of the number of stations (NSTA) contributing to network mb during 1904-1970 (left) and 

during 1971-2009 (right) 
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Figure 4.8 The number of recomputed mb per year (top); the number of recomputed mb values versus earthquake 

origin time (bottom) 

4.4 Determination of MW Proxy 

To fulfill the GEM request of producing the instrumental catalogue with the most possible homogeneous 

moment magnitude values, it was necessary to obtain empirical relationships between the classical magnitude 

scales and MW, so that proxy values of MW can be obtained. This is especially important for several hundreds 

of earthquakes in the early instrumental period (and before the beginning of the GCMT Catalog in 1976), where 

no direct measurements of seismic moments are available, especially for strong-major earthquakes. The ISC-

GEM Catalogue consists of 18,781 earthquakes; of these 11,112 has a GCMT MW value, 970 an MW value from 

the literature search. For the remaining earthquakes in the catalogue we provide MW proxy values obtained 

from regression relations between MW and MS, or if there is no MS measurement available, between MW and 

mb. 

Several articles in the recent years dealt with the magnitude conversion problem, mostly applying linear 

regression techniques (e.g., Scordilis, 2006; Castellaro and Bormann, 2007; Bormann et al., 2007, 2009; Das et 

al., 2011). Regardless of the different datasets and event selection criteria, as well as the small differences in 

the parameters of the models obtained from different authors, one of the main outcomes of the recent 
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literature is that the Generalized Orthogonal Regression (GOR) performs better than standard linear 

regressions and, therefore, its use is advisable to derive magnitude conversion relationships.  

However, the linear regression models are subject to certain limitations when applied to highly heterogeneous 

datasets such as MS-MW and mb-MW, as we will discuss further. Therefore, instead of applying any of the 

published regression relations, we take advantage of the ISC-GEM Catalogue that represents the most 

comprehensive data set to date with uniformly computed MS and mb values and derive new empirical 

relationships using exponential as well as GOR linear regressions to obtain MW proxies from MS and mb. The 

new models are tested against true values of MW.  

4.4.1 5.4.1 Determination of MW proxy based on MS 

The surface wave magnitude MS is proven to be a good estimator of MW since it scales rather well in a wide 

range of magnitudes. This makes MS our preferred magnitude to obtain proxy MW. Figure 4.9 shows a standard 

scatter plot the comparison between the MS and MW(GCMT). In order to avoid censoring effects around the lower 

cut-off magnitude (i.e., between 5.5 and 5.7) in the ISC-GEM magnitude catalogue, data pairs for smaller 

earthquakes have been added. These additional data includes earthquakes occurred between 1996 and 2009. 

 

 

Figure 4.9 Comparison between MS(ISC-GEM) and MW(GCMT). Data includes the 1976-2009 relocated earthquakes in the ISC-

GEM Catalogue and smaller earthquakes during 1996-2009. These additional values have been added with the only 

purpose of avoiding censoring effects around 5.5-5.7 

 

The comparison on Figure 4.9 confirms the good correlation between MS and MW, even if large differences for 

a few earthquakes can occur, at times possibly due to the presence of outliers stemming from errors in the 

measurements. However, to better describe the heterogeneities of such a population, Figure 4.10 shows the 

same plot as Figure 4.9, but color-coded by the number of observations in cells of 0.05x0.05 magnitude units. 
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Figure 4.10 Data frequency plot from the MS-MW population of Figure 5.9 

 

An important feature is that earthquakes below magnitude 6 dominate the data population, and the 

proportion of large earthquakes (>7) is rather small compared to the overall size of the distribution. It should 

also be noted that the MS does not appear linearly correlated with MW across the entire magnitude range. 

To derive and validate the regression relationships, we divide the data set into two subsets: one that is the 

training set used to derive the model (90% of the whole population), and the second (remaining 10%) to be 

used as a validation set. Owing to the large amount of earthquakes with MS – MW pairs, selecting 10% of the 

whole data set means that the validation data set consists of over 1,700 data pairs. Rather than randomly 

selecting data points on the whole magnitude range, the validation data set is selected using an histogram 

equalization scheme, as shown on Figure 4.11. The histogram equalization defines magnitudes bins with 

varying width so that each bin contains equal number of data points. For each bin, a randomly chosen 10% of 

the data is assigned to the validation set, while the remaining 90% of the data is added to the training set. Thus 

both the training and validations sets retain the shape of the distribution of the entire data. Moreover, since 

we need to obtain a proxy MW for a few major and great earthquakes and also considering the lack of data 

points for very large earthquakes, we did not exclude MS-MW pairs where MS is probably saturated (possibly 

around 8.3 and above). 

As we mentioned before, another important aspect of the MS-MW distribution is that the trend on the whole 

magnitude range is not linear, as illustrated by the median value in each bin on Figure 4.11. This aspect affected 

regression approaches between MS and MW in the recent literature, and especially after Scordilis (2006). 

Indeed, it became common practice to split the MS-MW population in two different domains: one truncated at 

MS = 6.1 or 6.2, where the slope of the linear trend is ~0.7, and the other for larger values of MS, where the 

linear trend has a slope of ~1. This is normally referred to as bi-linear trend between MS and MW. Although the 

“bi-linear regression” proved to work well enough in obtaining reliable MW proxies, such an approach 

introduces some arbitrariness in the data set separation and also a discontinuity point in the relationships 

derived. Indeed, the separation between slope ~0.7 and ~1 is not sharp at all and the separation normally 

adopted at MS = 6.1 could be moved anywhere between MS 6 and ~6.5. Thus, data pairs in this MS range may 

belong to a domain or another depending on the subjective choice of an author of how the data set was divided 
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into the two domains. This also means that the crossing point of the two linear models will vary with different 

separation criteria. In addition, it must be considered that a bi-linear model raises the question on how to 

consistently map the uncertainty in MS to MW proxies around the separation of the two linear trends. To avoid 

the problems raised with the bi-linear regression, we fit a single, continuous regression curve to the training 

dataset using an exponential model of the form My = exp(a+b*Mx)+c. The regression is performed using the 

non-linear least square algorithm (Bates and Watts, 1988; Bates and Chambers, 1992) freely available with the 

R-language. 

 

 

Figure 4.11 Top left and bottom right: histograms distribution of MW and MS, respectively; Bottom left: cumulative 

percentile. Top right: scatter plot showing in blue the 90% of the whole population falling in the training set, and in 

red - the remaining 10% to be used as validation set; overlaid is also shown the median value in each bin 

 

Figure 4.12 shows the exponential regression curve, as well as the “classical” GOR bilinear regression lines. The 

exponential regression not only helps us to avoid the pitfalls of bilinear regression, but also fits the 

observations better. The exponential model to convert MS to proxy MW follows more closely the empirical 

median values and reads as 

MW = exp(-0.22x0.23xMs) + 2.86 (4.5) 
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Figure 4.12 Training dataset set MS-MW with regression models: the exponential fit is drawn in red; the bi-linear GOR 

model is shown in green. The dashed black curve is the median value in each bin from Figure 4.11 

 

The GOR models read as  

MW = 0.67MS + 2.13 for MS ≤ 6.47 (4.6) 

 

and 

MW = 1.10MS – 0.67 for MS > 6.47 (4.7) 

and are comparable with the GOR models obtained from globally distributed earthquakes by Bormann et al. 

(2009)  

MW = 0.67MS(20) + 2.18 for MS(20) < 6.55 (4.8) 

and 

MW = 0.99MS(20) + 0.08 for MS(20) ≥ 6.55 (4.9) 

  

respectively 

MW = 0.75MS(BB) + 1.63 for MS(BB) < 6.73 (4.10) 

and  

MW = 0.96MS(BB) + 0.38 for MS(BB) ≥ 6.73 (4.10) 

 

or the GOR models of Das et al. (2011) 

MW = 0.67MS + 2.12 for 3.0 ≤ MS ≤ 6.1 (4.11) 

and 

MW = 1.06MS – 0.38 for 6.2 ≤ MS ≤ 8.4 (4.12) 

as well as with the respective linear standard models obtained by Scordilis (2006) 

MW = 0.67MS + 2.07 for 3.0 ≤ MS ≤ 6.1 (4.13) 
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and 

MW = 0.99MS + 0.08 for 6.2 ≤ MS ≤ 8.2 (4.14) 

 

Figure 4.13 shows the derived models against the validation dataset and the comparison of true MW values 

versus corresponding proxies. 

 

 

Figure 4.13 Left: validation dataset with regression models as on Figure 4.12: in red is shown the exponential fit, in 

green the two GOR models. Right: comparison of true MW values and proxies for the validation dataset (green: from 

the GOR models, red: from the exponential model) 

 

Generally, both models produce proxies reliable enough, but for earthquakes with MW < 7 the exponential fit 

appears to work better than the GOR model. Hence, we used the exponential fit for converting MS values in 

the ISC-GEM Catalogue to obtain MW proxies. The uncertainty of the proxy is mapped by projecting the 

uncertainty of the recomputed MS to the Y-axis.  

The conversion relationship constrained with GCMT data (i.e., starting from 1976) is applied whenever 

necessary to derive a proxy for the entire time span of the ISC-GEM Catalogue. For MS, however, we can 

compare MW values compiled from the literature with proxy MW values based on recomputed MS for 

earthquakes occurred between 1904 and 1975. This comparison is shown on Figure 4.14.  

Although the data scatter on Figure 4.14 is larger than on Figure 4.13, the general trend is satisfactory. Besides, 

it must be considered that MW from the bibliography is generally less reliable than MW from GCMT. Figure 4.14 

shows also how the proxy for the well-know 1960 MW = 9.6 Valdivia earthquake is significantly underestimated. 

In the ISC-GEM Catalogue, however, only 5 earthquakes with MS between 8 and 8.5 have been used to obtain 

a proxy. 
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Figure 4.14 Comparison of MW values compiled from the bibliography search and proxy MW values based on MS for 

earthquakes occurred between 1905 and 1975 

4.4.2 Determination of MW proxy based on mb 

Differently from MS, the short-period body-wave magnitude mb has a larger scatter with MW, especially for 

earthquakes with magnitude above 6. Therefore mb is used only when MS is not available to obtain a proxy 

(this is especially the case of deep earthquakes). Similarly to the MS-MW distribution, the mb-MW population is 

not uniform and is best described in a frequency plot (Figure 4.15).  

Again, the dataset is strongly dominated by earthquakes below magnitude 6 and also with a much larger scatter 

compared to the MS-MW distribution. Moreover, mb strongly underestimates MW above 6, and saturates 

already for major earthquakes (more details in Kanamori, 1983; Bormann et al., 2009). For the same reasons 

mentioned for MS, however, we did not exclude data pairs close to or above the saturation level of mb.  

 

Figure 4.15 Data frequency plot from the mb-MW population 
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The selection criteria to select the training and the validation datasets are the same as for MS and shown on 

Figure 4.16. 

 

Figure 4.16 The same as for Figure 4.11 but for the mb-MW population 

 

Figure 4.17 shows the derived GOR and exponential models. Here the GOR model is obtained without splitting 

the distribution. The exponential model to convert mb to proxy MW reads as 

MW = exp(-4.66+0.86mb) + 4.56 (4.15) 

and GOR model as  

MW = 1.38mb – 1.79 (4.16) 

The GOR model differs more with respect to linear standard model of Scordilis (2006)  

MW = 0.85mb + 1.03 for 3.5 ≤ mb ≤ 6.2 (4.17) 

and the inverted standard regression of Das et al. (2011) 

mb = 0.61Mw + 1.94 for 3.8 ≤ mb  ≤ 6.5 (4.18) 

These differences are probably due to the dataset truncation at mb = 6.2 and 6.5 adopted by Scordilis (2006) 

and Das et al. (2001), respectively. Indeed, the Das et al. (2011) relationship is closer to our GOR model, as they 

used an upper mb truncation. 
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Figure 4.17 Training dataset mb-MW with regression models: in red is shown the exponential fit, in green the GOR 

model. The dashed black curve is the median value in each bin as from Figure 4.16 

 

The exponential model follows even more closely the median values than the GOR model. Both models, 

however, suffer from the saturation of mb for larger earthquakes, and tend to underestimate the MW value. 

Thus, MW proxies derived from the mb–MW relation should be used with caution for mb values above 6.8. For 

the ISC-GEM Catalogue, only 13 earthquakes require MW proxy based on mb with mb > 6.5, but all of them have 

mb < 6.8. 

Figure 4.18 shows the regression models against the validation dataset with the regression models and the 

comparison between true MW values against proxies.  

For mb values above 6.5, neither the GOR nor the exponential model produce excellent proxies, but for smaller 

MW values, in a range approximately between 4.5 and 6, the results from the exponential model are generally 

preferred to the linear one. Thus, as with MS, our choice for deriving MW proxy from for mb is the exponential 

model. As for MS, the uncertainty of the proxy is obtained by projecting the uncertainty of the recomputed mb 

to the Y-axis. Note that if we used the linear regression model, the mb uncertainties would also linearly project 

to the MW proxy uncertainties, that is, the uncertainty in the MW proxy would be the same for an mb =5.6 ± 0.1 

earthquake as for an mb =6.6 ± 0.1 earthquake. The exponential model on the other hand, would provide 

increasingly larger MW proxy uncertainties with increasing mb values, thus providing more reliable uncertainty 

estimates when mb starts saturating. 
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Figure 4.18 Left: validation dataset with regression models as on Figure 4.17: in red is shown the exponential fit, in 

green the two GOR model. Right: comparison of true MW values and proxies for the validation dataset (green from 

the GOR model, red from the exponential model) 

 

4.5 Description of the Magnitude Source and Quality Flags 

In the ISC-GEM Catalogue (See Appendix A) the field describing the source of the magnitude can be set equal 

to “p” (stands for proxy) when the moment magnitude is obtained from a conversion relationship, or “d” when 

the moment magnitude is obtained from a direct measurement of the seismic moment M0.  

The magnitude quality field, instead, can have 4 different flags (as for the location and depth) varying from 

highly reliable (A) to not reliable (D). In the following are listed the conditions to assign the magnitude quality 

flag in the ISC-GEM Catalogue.  

Flag A (most reliable) is reserved for magnitudes of those events where a direct measurement of M0 is 

available. This is, in practice, the case of MW from the GCMT Catalog. 

Flag B is assigned in two different situations. One case is when M0 estimations are available from the 

bibliographical search (Section 4.2) and the estimated uncertainty spans from 0.2 to 0.3. The other case is 

when MW proxies are based on MS, but only for highly reliable MS determinations (that is, number of station 

magnitudes contributing to network MS > 4, uncertainty of network MS ≤ 0.2, uncertainty of proxy MW ≤ 0.3, 

and only for 5.5 ≤ MS ≤ 7.5). 

Flag C is assigned in different situations. One case is when M0 estimations are available from the bibliographical 

search (Section 4.2) and the estimated uncertainty is 0.4. The second case is when MW proxies are based on 

MS, but only for MS determinations not satisfying the criteria for assigning flag B. Here it is worth to recall that 

a network MS magnitude from two high quality single stations has been obtained for 87 earthquakes. The flag 

is set to C for these events. Finally, flag C is assigned to those earthquakes where MW proxies are based on mb, 

which has been shown to be the poorest predictor for MW. 

Flag D is assigned for those earthquakes where there is no network magnitude. This is the case for the 

earthquakes in the early instrumental period listed in the Appendix. This situation is encountered especially 

before the deployment of the WWSSN in the 1960s. For those earthquakes, therefore, no single station 
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magnitude is available or only 1 to 2 single stations are available (with the exception of the 87 earthquakes 

mentioned above). 
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5 Completeness analysis of the ISC-GEM Catalogue 

5.1 Assessment of Completeness on a Global Scale 

As already mentioned, the ISC-GEM Catalogue has three different cut-off magnitudes applying in the following 

time periods: 

 Magnitude  ≥ 7.5 up to 1917; in addition, selected earthquakes in stable continental region and/or 

away from major plate boundaries with magnitude between 6.5 and 7.5 have been considered; 

 Magnitude ≥ 6.25 between 1918 and 1959; 

 Magnitude ≥ 5.5 between 1960 and 2009. 

For all figures in this chapter, the word magnitude designates direct MW, where available, or proxy MW 

otherwise. 

Figure 5.1 shows the time-magnitude distribution of the ISC-GEM Catalogue. 

  

 

Figure 5.1 Time-magnitude distribution of the ISC-GEM Catalogue 

 

The effect of these three cut-off magnitudes is clearly depicted. However, to visualize the actual time variation 

of the frequency-magnitude distribution better, it is preferable to consider Figure 5.2.  
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Figure 5.2 Bottom panel: same as Figure 6.1 but color-coded in bins of 0.1 magnitude units for each year. Top panel: 

cumulative number of earthquakes per year for the three cut-off magnitudes. Right panel: magnitude distribution for 

the entire ISC-GEM Catalogue 

 

One important feature shown on Figure 5.2 is the significant increase in the number of earthquakes starting 

from 1964. Secondly, even if fluctuations are present, the number of events per year between 6.5 and 7.5 

seems to be quite stable for most of the catalogue from 1918 to 2009, with the apparent decrease observed 

in the 1940s most probably due to inoperative good quality stations as result of WWII. Another characteristic 

is that the occurrence of earthquakes above 7.5 can significantly vary from decade to decade. For example, 

between 1980 and 1994 the occurrence of earthquakes above 7.5 seems much smaller than in other time 

periods. Thus, the time window for assessing the seismicity rate of large earthquakes should be selected as 

large as possible.  

Evidently, the frequency-magnitude distribution is strongly time dependent for the 110 years covered by the 

ISC-GEM Catalogue. In order to assess the effect of such variability over the years, Figure 5.3 shows the 

frequency-magnitude distributions for cumulative time periods (in steps of 22 years) starting from 1900, where 

the next period adds data from the previous one. In addition, curves for the early instrumental period (up to 

1963) and the modern one (1964-2009) are also shown along with estimated magnitude of completeness Mc 

estimated with the maximum curvature method of Wiemer and Wyss (2000). 
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Figure 5.3 Classical cumulative frequency-magnitude distributions for different time periods. In color are plotted the 

curve for cumulative time periods in steps of 22 years starting from 1900, whereas the black triangles refer to data 

between 1964 and 2009 only and the inverted triangles refer to data between 1900 and 1963. The completeness 

magnitude Mc for the 1964-2009 and for the 1900-1963 periods are shown as solid black line and dashed black lines, 

respectively. Mc is computed via the maximum curvature method of Wiemer and Wyss (2000) 

 

Figure 5.3 is only one of the many possibilities of showing the frequency-magnitude distributions for different 

time periods. The main intent is to emphasize the effects on the seismicity rates that can be derived without a 

proper time window selection. In more detail, it is interesting to note how the frequency-magnitude 

distribution for the period 1964-2009 is above all the others up to magnitude 7.5-7.6. For higher magnitudes, 

instead, frequency-magnitude distributions are comparable if the time range covered is larger than 60 years. 

In the light of these considerations, we computed the completeness magnitude only for the period up to 1963 

(Mc = 6.37) and from 1964 to 2009 (Mc = 5.6). This way, when considering the frequency-magnitude 

distribution between 1964 and 2009, a better representation of the seismicity rate is given for moderate 

earthquakes up to magnitude ~7.5, whereas for the period up to 1963 the Mc of 6.37 seems to be slightly 

underestimated if compared to the number of earthquake above 6.3-6.4 observed in the modern period (as 

also deducible from the color-coded plot of Figure 5.2). On the other hand, when considering the seismicity 

rate of earthquakes above 7.5, it is advisable to extend the time window and consider the frequency-

magnitude distribution for the entire catalogue (see pink symbols that relate to the 1900-2009 period on Figure 

5.3). 
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5.2 Assessment of Completeness on a Regional Scale  

In order to estimate the spatial completeness for different areas, we selected 12 macro-regions, as shown on 

Figure 5.4.  

 

 

Figure 5.4 The map shows the ISC-GEM locations and the area selection for the regional magnitude completeness 

assessment. From top left, these regions encompass roughly North America, Central America and the Caribbean, 

South America, Europe-Africa-Middle East, continental Asia, and then six regions for the East Pacific ocean (Aleutian, 

Kuril-Japan, Taiwan-Philippines-Marianna Is., Indonesia, New Guinea-Vanuatu, Fiji-Tonga-New Zealand). The names 

given to each geographical region are indicated on the top of each subplot in the following figures. Earthquakes not 

included in any polygon are considered in a single group called Oceans 

 

The area selection has been made as a reasonable compromise between number of earthquakes in a polygon, 

vicinity to land, and geodynamic setting. For example, due to the small number of earthquakes in Africa, we 

grouped these earthquakes with the ones occurred in a large area covering Europe and the Middle East.  

Figure 5.5 shows the frequency-magnitude distributions for the five polygons covering mostly the continents 

and the group considering the earthquakes in the oceans. On Figure 5.6, instead, are reported the distributions 

for the six polygons covering the East Pacific ocean (mostly subduction zones). In both figures, each subplot 

shows the frequency-magnitude distributions for three periods only: 1) from the beginning of the past century 

up to 1963; 2) from the beginning of the past century up to 2009; 3) from 1964 up to 2009. 
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Figure 5.5 Cumulative frequency-magnitude distributions for the regions named in each subplot are shown. Filled 

black triangles indicate frequency-magnitude distribution for the period 1964-2009, inverted triangle - up to 1963 

only, and stars - for entire time range of the catalogue. The completeness magnitude Mc for the period 1964-2009 and 

up to 1963 are shown as solid black and dashed black lines, respectively 
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Figure 5.6 As for Figure 5.5 but for the six polygons covering the East Pacific ocean 

 

The estimated Mc is rather stable at about 5.6 for all the polygons in the modern period, whereas for the early 

instrumental period Mc spans from 6.3 to 6.5. Especially the areas regarding the East Pacific ocean tend to 

have a slightly larger Mc between 6.4 and 6.5 compared to the polygons covering the continents. This is not 

surprising as many good quality stations up to 1963 are rather distant from these areas. 
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6 Conclusions 

On request and with sponsorship from the GEM Foundation we compiled and delivered the ISC-GEM Global 

Instrumental Earthquake Catalogue (1900-2009). 

 The ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009) is a major step forward on the way 

to improve characterization of spatial distribution of seismicity, magnitude frequency relation and 

maximum magnitudes within the scope of GEM. 

 With a few exceptions, parameters of this catalogue are the result of computations based on the original 

reports of seismic stations and observatories. 

 We made every effort to use uniform location and magnitude determination procedures during the 

entire period of the catalogue: 

o In earthquake location, we used a combination of the EHB depth determination technique and 

the new ISC procedures that use a multitude of primary and secondary seismic phases from the 

IASPEI Seismic Phase List and the ak135 velocity model and take into account the correlated 

error structure. 

o In determination of earthquake magnitude, where possible, we used direct MW values from 

Global CMT project for the period 1976-2009. In addition, 1,127 high quality scientific papers 

have been processed to obtain directly measured values of M0 and MW for 970 large 

earthquakes during 1900-1979. In all other instances we computed MW proxy values based on 

our own determination of instrumental surface or body wave magnitudes using updated 

regression models. 

o It has to be noted that a computation of MW proxy values based on regressions from other types 

of magnitudes does not bring similarly reliable results as compared to a direct measurement of 

MW based on the original waveform analysis. It is, nevertheless, a necessary measure since the 

direct measurement of MW using historical analogue waveforms on a global scale is beyond the 

scope of this project. 

 A number of important additional benefits have been achieved during this project: 

o The entire ISC collection of historical paper-based seismic station bulletins was reviewed, 

indexed and catalogued for further works. Indexes of similar collections at USGS/Berkeley were 

used in filling the gaps in the ISC collection.  

o A large number of seismic phase arrival times, body and surface wave amplitude measurements 

have been made electronically available on a global scale that have never been available on a 

global scale prior to this project. 

o A large number of more accurate network MS and mb magnitudes have been computed for large 

earthquakes that either had no magnitude estimate or the estimates were previously based on 

single or unreliable station data. 

 In our work we consulted and were observed by experts from the IASPEI and, where possible, followed 

the IASPEI seismic standards.  

 We put together an excellent team of professionals in the field and gave training to a group of technical 

personnel without whom the work on this project would have been impossible to complete. These 

personnel members are a valuable asset of this project and their experience can be used if further work 

was to be planned. 
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 Although the ISC-GEM Catalogue is a major accomplishment, we nevertheless believe that further work 

is necessary to enhance its qualities: 

o Firstly, neglecting to update the ISC-GEM Catalogue beyond 2009 would seriously hamper the 

GEM community efforts of testing and refining of the earthquake forecasting models.  

o Secondly, it is well known that in seismic hazard studies the effect of small to moderate size 

earthquakes is not negligible. This is especially the case in densely populated and industrialized 

areas. This calls for further improvement of completeness of the reference catalogue to be 

extensively used by GEM community for many years to come. 

Thirdly, it has to be noted that we really have no magnitude estimates for many events in our main original 

source of historical data before 1964 – the ISS Catalog. Some of these events in the first part of the 20th century 

could be large enough to have caused damage. The work of including many more earthquakes recorded at 

teleseismic distances and bringing previously unavailable station amplitude data from historical station 

bulletins would greatly contribute to more accurate consequent analysis of global earthquake hazard and risk. 
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APPENDIX A ISC-GEM Catalogue Format 

The ISC-GEM Catalogue is delivered in the CSV (comma separated values) format that contains: 

 earthquake origin date and time; 

 epicentre (lat,lon); 

 error ellipse parameters (smajax, sminax, strike), epicentre quality (q:A(highest)/B/C); 

 depth, depth uncertainty (unc), depth quality (q:A(highest)/B/C); 

 Mw, Mw uncertainty (unc), quality (q:A(highest)/B/C), source(s:p-proxy, d-direct computation); 

 where available: scalar moment (mo), factor (fac) , mo author (mo_auth); 

 where available: six moment tensor components (mpp, mpr, mrr, mrt, mtp, mtt); 

 ISC numerical event identificator. 

The Appendix to the catalogue is provided in the same format as a separate file. It contains a list of those 

earthquakes for which poor data availability prevented the authors from performing a reliable determination 

of either the epicentre or the magnitude parameters or both. Quality flag D indicates which parameter is 

unavailable or poorly estimated. 

We also provided the kmz-formatted file for those willing to examine the catalogue properties using the Google 

Earth package. 

 



 II 

APPENDIX B Articles with Direct M0 Determination Collected During the 

Bibliographical Search  

 

The list of references below includes 1,127 scientific articles that contained direct determination of Mo of 

earthquakes included in the ISC-GEM Catalogue. 
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